Project Icon

mamba-370m-hf

兼容transformers库的高效语言模型

项目是一种与transformers库兼容的语言模型,整合了config.json和tokenizer,以提高文本生成的速度和准确性。建议安装transformers的最新主版本,以及causal_conv_1d和mamba-ssm,以充分利用优化的cuda内核。该项目支持经典的generate API和PEFT微调,使用float32格式进行微调可获得最佳性能表现,从而提升文本生成任务的效率和质量。项目形成了一种与transformers库兼容的模型环境,通过优化策略实现高效文本生成。

项目简介

mamba-370m-hf 项目是一个与 transformers 库兼容的模型,实际上是 mamba-2.8b 的检查点版本。该库保存了完整的 config.json 和分词器文件,这些都是模型运行所必需的。

使用指南

在使用 mamba-370m-hf 项目之前,用户需要从 transformersmain 分支安装相关库,直到 transformers=4.39.0 版本发布为止。安装命令如下:

pip install git+https://github.com/huggingface/transformers@main

此外,建议安装 causal_conv_1dmamba-ssm 两个库,以便使用优化的 cuda 内核。如果这两个库没有安装,系统将默认使用一个“eager”的实现。

安装命令如下:

pip install causal-conv1d>=1.2.0
pip install mamba-ssm

文本生成

可以使用经典的 generate API 来生成文本。以下是一个简单的代码示例:

from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-370m-hf")
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-370m-hf")
input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"]

out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
# 输出示例: ["Hey how are you doing?\n\nI'm doing great.\n\nI"]

PEFT 微调示例

如果想使用 peft 库对模型进行微调,建议将模型保持在 float32 格式。以下是详细的微调过程示例:

from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments

tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-370m-hf")
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-370m-hf")
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=4,
    logging_dir='./logs',
    logging_steps=10,
    learning_rate=2e-3
)
lora_config = LoraConfig(
    r=8,
    target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
    task_type="CAUSAL_LM",
    bias="none"
)
trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    args=training_args,
    peft_config=lora_config,
    train_dataset=dataset,
    dataset_text_field="quote",
)
trainer.train()

以上示例展示了如何加载数据集、配置训练参数、以及利用 LoraConfig 进行微调配置,并最终开始训练。这种方法便于针对具体文本任务进行模型优化。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号