Project Icon

whatsapp-cloud-api

适用于WhatsApp Cloud API的Node.js库,用于开发聊天机器人

whatsapp-cloud-api是一个基于Node.js的开源库,用于开发WhatsApp Cloud API应用。该库提供简洁的API接口,支持发送和接收文本、图片、位置等多种类型的消息。内置TypeScript声明,并配有详细文档和教程。支持自定义Express服务器配置,便于集成现有项目。适合开发者快速构建WhatsApp聊天机器人和消息处理应用。

whatsapp-cloud-api

whatsapp-cloud-api is a Node.js library for creating bots and sending/receiving messages using the Whatsapp Cloud API.

Contains built-in Typescript declarations.

run tests, lint, build npm publish npm npm bundle size npm


ℹ️ Status

This project is now Archived. Please read more here.


Install

Using npm:

npm i whatsapp-cloud-api

Using yarn:

yarn add whatsapp-cloud-api

Usage

import { createBot } from 'whatsapp-cloud-api';
// or if using require:
// const { createBot } = require('whatsapp-cloud-api');

(async () => {
  try {
    // replace the values below
    const from = 'YOUR_WHATSAPP_PHONE_NUMBER_ID';
    const token = 'YOUR_TEMPORARY_OR_PERMANENT_ACCESS_TOKEN';
    const to = 'PHONE_NUMBER_OF_RECIPIENT';
    const webhookVerifyToken = 'YOUR_WEBHOOK_VERIFICATION_TOKEN';

    // Create a bot that can send messages
    const bot = createBot(from, token);

    // Send text message
    const result = await bot.sendText(to, 'Hello world');

    // Start express server to listen for incoming messages
    // NOTE: See below under `Documentation/Tutorial` to learn how
    // you can verify the webhook URL and make the server publicly available
    await bot.startExpressServer({
      webhookVerifyToken,
    });

    // Listen to ALL incoming messages
    // NOTE: remember to always run: await bot.startExpressServer() first
    bot.on('message', async (msg) => {
      console.log(msg);

      if (msg.type === 'text') {
        await bot.sendText(msg.from, 'Received your text message!');
      } else if (msg.type === 'image') {
        await bot.sendText(msg.from, 'Received your image!');
      }
    });
  } catch (err) {
    console.log(err);
  }
})();

Documentation

Examples

Sending other message types (read more in API reference):

// Send image
const result = await bot.sendImage(to, 'https://picsum.photos/200/300', {
  caption: 'Random jpg',
});

// Send location
const result = await bot.sendLocation(to, 40.7128, -74.0060, {
  name: 'New York',
});

// Send template
const result = await bot.sendTemplate(to, 'hello_world', 'en_us');

Customized express server (read more below):

import cors from 'cors';

// Create bot...
const bot = createBot(...);

// Customize server
await bot.startExpressServer({
  webhookVerifyToken: 'my-verification-token',
  port: 3000,
  webhookPath: `/custom/webhook`,
  useMiddleware: (app) => {
    app.use(cors()),
  },
});

Listening to other message types (read more in API reference):

const bot = createBot(...);

await bot.startExpressServer({ webhookVerifyToken });

// Listen to incoming text messages ONLY
bot.on('text', async (msg) => {
  console.log(msg);
  await bot.sendText(msg.from, 'Received your text!');
});

// Listen to incoming image messages ONLY
bot.on('image', async (msg) => {
  console.log(msg);
  await bot.sendText(msg.from, 'Received your image!');
});

Notes

1. Verifying your Webhook URL

By default, the endpoint for whatsapp-related requests will be: /webhook/whatsapp. This means that locally, your URL will be: http://localhost/webhook/whatsapp.

You can use a reverse proxy to make the server publicly available. An example of this is ngrok.

You can read more on the Tutorial.

2. Handling incoming messages

The implementation above creates an express server for you through which it listens to incoming messages. There may be plans to support other types of server in future (PRs are welcome! :)).

You can change the port as follows:

await bot.startExpressServer({
  port: 3000,
});

By default, all requests are handled by the POST|GET /webhook/whatsapp endpoint. You can change this as below:

await bot.startExpressServer({
  webhookPath: `/custom/webhook`,
});

Note: Remember the leading /; i.e. don't use custom/whatsapp; instead use /custom/whatsapp.

If you are already running an express server in your application, you can avoid creating a new one by using it as below:

// your code...
import express from 'express';
const app = express();

...

// use the `app` variable below:
await bot.startExpressServer({
  app,
});

To add middleware:

import cors from 'cors';

await bot.startExpressServer({
  useMiddleware: (app) => {
    app.use(cors()),
  },
});

Full customized setup:

import cors from 'cors';

await bot.startExpressServer({
  webhookVerifyToken: 'my-verification-token',
  port: 3000,
  webhookPath: `/custom/webhook`,
  useMiddleware: (app) => {
    app.use(cors()),
  },
});

3. on() listener

This library uses a single process pubsub, which means that it won't work well if you're deploying on multi-instance clusters, e.g. distributed Kubernetes clusters. In future, there may be plans to export/support a pubsub reference which can be stored in extenal storage, e.g. redis (PRs are welcome! :)).

Development

# install npm modules
npm i

# eslint
npm run lint

# typescript check
npm run ts-check

# test
## Read 'Local Testing' below before running this
npm t

# build
npm run build

Local Testing

Create a .env file in the root of your project:

FROM_PHONE_NUMBER_ID=""
ACCESS_TOKEN=""
VERSION=""
TO=""
WEBHOOK_VERIFY_TOKEN=""
WEBHOOK_PATH=""

Attribution

Library API inspired by node-telegram-bot-api.

Pull Requests

Any and all PRs are open.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号