Project Icon

V-Express

渐进式训练提升肖像视频生成质量

V-Express项目提出条件性丢弃新方法,实现肖像视频生成的渐进式训练。该方法平衡不同控制信号强度,增强音频等弱信号作用,同时考虑姿态、图像和音频,生成高质量肖像视频。项目优化内存使用,支持长视频生成,提供多种重定向策略,适用不同场景。开源代码和模型可供学术及商业用途,但使用时需遵守相关法规。

V-Express: 使用条件性丢弃实现渐进式训练的人像视频生成

GitHub


简介

在人像视频生成领域,使用单张图像生成人像视频已变得越来越普遍。一种常见的方法是利用生成模型来增强适配器以实现可控生成。然而,控制信号的强度可能各不相同,包括文本、音频、图像参考、姿势、深度图等。其中,较弱的条件往往难以发挥作用,因为它们会受到较强条件的干扰,这就带来了平衡这些条件的挑战。在我们的人像视频生成工作中,我们发现音频信号特别微弱,常常被姿势和原始图像等较强信号所掩盖。然而,直接使用弱信号训练往往会导致收敛困难。为解决这个问题,我们提出了V-Express,这是一种通过一系列渐进式丢弃操作来平衡不同控制信号的简单方法。我们的方法逐步实现了弱条件的有效控制,从而达到同时考虑姿势、输入图像和音频的生成能力。

global_framework

发布

  • [2024/06/15] 🔥 我们优化了内存使用,现在支持生成更长的视频。
  • [2024/06/05] 🔥 我们在arXiv上发布了技术报告。
  • [2024/06/03] 🔥 如果你使用ComfyUI,可以尝试ComfyUI-V-Express
  • [2024/05/29] 🔥 我们添加了视频后处理,可以有效缓解闪烁问题。
  • [2024/05/23] 🔥 我们发布了代码和模型。

安装

# 下载代码
git clone https://github.com/tencent-ailab/V-Express

# 安装依赖
cd V-Express
pip install -r requirements.txt

# 下载模型
git lfs install
git clone https://huggingface.co/tk93/V-Express
mv V-Express/model_ckpts model_ckpts
mv V-Express/*.bin model_ckpts/v-express

# 然后你就可以使用脚本了

下载模型

你可以从这里下载模型。我们已在模型卡中包含了所有必需的模型。你也可以从原始仓库单独下载模型。

使用方法

重要提醒

${\color{red}重要!重要!!重要!!!}$

在说话人脸生成任务中,当目标视频与参考人物不是同一个人时,面部的重定向将是一个非常重要的部分。选择与参考面部姿势更相似的目标视频将能获得更好的结果。此外,我们的模型目前在英语上表现更好,其他语言尚未进行详细测试。

运行演示(步骤1,可选

如果你有目标说话视频,可以按照下面的脚本从视频中提取音频和面部V-kps序列。你也可以跳过这一步,直接运行步骤2中的脚本来尝试我们提供的示例。

python scripts/extract_kps_sequence_and_audio.py \
    --video_path "./test_samples/short_case/AOC/gt.mp4" \
    --kps_sequence_save_path "./test_samples/short_case/AOC/kps.pth" \
    --audio_save_path "./test_samples/short_case/AOC/aud.mp3"

我们建议如下例所示裁剪一个清晰的正方形人脸图像,并确保分辨率不低于512x512。下图中从绿色到红色的框是推荐的裁剪范围。

crop_example

运行演示(步骤2,核心

场景1(A的图片和A的说话视频)(最佳实践)

如果你有A的图片和A在另一个场景中的说话视频。那么你应该运行以下脚本。我们的模型能够生成与给定视频一致的说话视频。你可以在我们的项目页面上看到更多示例。

python inference.py \
    --reference_image_path "./test_samples/short_case/AOC/ref.jpg" \
    --audio_path "./test_samples/short_case/AOC/aud.mp3" \
    --kps_path "./test_samples/short_case/AOC/kps.pth" \
    --output_path "./output/short_case/talk_AOC_no_retarget.mp4" \
    --retarget_strategy "no_retarget" \
    --num_inference_steps 25

${\color{red}新功能!!!}$ 我们优化了内存使用,现在支持生成更长的视频。对于31秒的音频,在V100测试环境中需要7956MiB的峰值内存,总处理时间为2617.4秒。你可以使用以下脚本尝试。

[!注意] ./test_samples/short_case/AOC/v_exprss_intro_chattts.mp3是使用ChatTTS生成的大约30秒的长音频片段,我们只需输入一段文本。然后我们使用V-Express生成人像视频。这可能是一个有趣的流程。

python inference.py \
    --reference_image_path "./test_samples/short_case/AOC/ref.jpg" \
    --audio_path "./test_samples/short_case/AOC/v_exprss_intro_chattts.mp3" \
    --kps_path "./test_samples/short_case/AOC/AOC_raw_kps.pth" \
    --output_path "./output/short_case/talk_AOC_raw_kps_chattts_no_retarget.mp4" \
    --retarget_strategy "no_retarget" \
    --num_inference_steps 25 \
    --reference_attention_weight 1.0 \
    --audio_attention_weight 1.0 \
    --save_gpu_memory

场景2(A的图片和任何说话音频)

如果你只有一张图片和任何说话音频。使用以下脚本,我们的模型可以为固定的面部生成生动的口型动作。

python inference.py \
    --reference_image_path "./test_samples/short_case/tys/ref.jpg" \
    --audio_path "./test_samples/short_case/tys/aud.mp3" \
    --output_path "./output/short_case/talk_tys_fix_face.mp4" \
    --retarget_strategy "fix_face" \
    --num_inference_steps 25

场景3(A的图片和B的说话视频)

  • 使用以下脚本,我们的模型生成生动的口型动作,伴随着轻微的面部运动。
python inference.py \
    --reference_image_path "./test_samples/short_case/tys/ref.jpg" \
    --audio_path "./test_samples/short_case/tys/aud.mp3" \
    --kps_path "./test_samples/short_case/tys/kps.pth" \
    --output_path "./output/short_case/talk_tys_offset_retarget.mp4" \
    --retarget_strategy "offset_retarget" \
    --num_inference_steps 25
  • 使用以下脚本,我们的模型可以生成与目标视频具有相同动作的视频,并且角色的口型与目标音频同步。

[!注意] 目前我们仅实现了非常简单的重定向策略,这使我们能够在有限条件下用不同的角色视频驱动参考面部。为获得更好的结果,我们强烈建议您选择一个更接近参考面部的目标视频。我们也正在尝试实现一种更稳健的面部重定向策略,希望能进一步解决参考面部与目标面部不一致的问题。我们也欢迎有经验的人士提供帮助。

python inference.py \
    --reference_image_path "./test_samples/short_case/tys/ref.jpg" \
    --audio_path "./test_samples/short_case/tys/aud.mp3" \
    --kps_path "./test_samples/short_case/tys/kps.pth" \
    --output_path "./output/short_case/talk_tys_naive_retarget.mp4" \
    --retarget_strategy "naive_retarget" \
    --num_inference_steps 25 \
    --reference_attention_weight 1.0 \
    --audio_attention_weight 1.0

更多参数

对于不同类型的输入条件,如参考图像和目标音频,我们提供了参数来调整该条件信息在模型预测中所起的作用。我们将这两个参数称为reference_attention_weightaudio_attention_weight。可以使用以下脚本应用不同的参数来实现不同的效果。通过我们的实验,我们建议reference_attention_weight取值0.9-1.0,audio_attention_weight取值1.0-3.0。

python inference.py \
    --reference_image_path "./test_samples/short_case/10/ref.jpg" \
    --audio_path "./test_samples/short_case/10/aud.mp3" \
    --output_path "./output/short_case/talk_10_fix_face_with_weight.mp4" \
    --retarget_strategy "fix_face" \    # 此策略不需要kps信息
    --reference_attention_weight 0.95 \
    --audio_attention_weight 3.0

我们在以下视频中展示了不同参数产生的不同效果。您可以根据需要相应调整参数。

致谢

我们要感谢magic-animateAnimateDiffsd-webui-controlnetMoore-AnimateAnyone仓库的贡献者,感谢他们的开放研究和探索。

V-Express的代码发布用于学术和商业用途。然而,从V-Express手动下载和自动下载的模型仅供非商业研究使用。我们发布的检查点也仅供研究使用。用户可以自由使用此工具创建视频,但有义务遵守当地法律并负责任地使用。开发者不承担用户可能滥用的任何责任。

引用

如果您发现V-Express对您的研究和应用有用,请使用以下BibTeX进行引用:

@article{wang2024V-Express,
  title={V-Express: Conditional Dropout for Progressive Training of Portrait Video Generation},
  author={Wang, Cong and Tian, Kuan and Zhang, Jun and Guan, Yonghang and Luo, Feng and Shen, Fei and Jiang, Zhiwei and Gu, Qing and Han, Xiao and Yang, Wei},
  booktitle={arXiv preprint arXiv:2406.02511},
  year={2024}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号