Project Icon

tt-metal

Python与C++神经网络运算库

TT-NN 提供灵活的神经网络运算功能,支持包括ResNet-50和BERT-Large在内的多种模型,能够实现高效的端到端和设备间的数据吞吐量。其兼容N150和N300卡的Wormhole模型,及适用于TT-QuietBox和TT-LoudBox的高性能模型,能满足不同硬件需求。结合TT-Metalium低级编程模型,提供丰富的开发指导和API参考,有助于在Tenstorrent硬件上高效地进行神经网络训练和推理。

tiny-tensorrt - 简洁易用的nvidia TensorRT封装库,支持通过C++和Python API快速部署Onnx模型
CUDACUDNNGithubTensorRTonnx modeltiny-tensorrt开源项目
tiny-tensorrt是一个简洁易用的nvidia TensorRT封装库,支持通过C++和Python API快速部署Onnx模型。依赖CUDA、CUDNN和TensorRT,兼容多个版本。项目已停止维护,建议使用TensorRT的Python API或trtexec/polygraphy工具。更多信息请参考项目Wiki。
attorch - 易于修改的Python神经网络模块
GithubPyTorchTritonattorch开源项目深度学习神经网络模块
attorch是一个基于OpenAI Triton的PyTorch模块子集,提供易于修改的高效神经网络模块。支持自动混合精度、计算机视觉和自然语言处理相关层。
MNN - 高效轻量的深度学习框架,支持多设备推理和训练
GithubMNN开源项目推理引擎深度学习框架轻量级高性能
MNN是一个高效轻量的深度学习框架,支持设备上的推理和训练。已被阿里巴巴30多个应用集成,覆盖直播、短视频、搜索推荐等70多种场景。MNN适用于嵌入式设备,支持TensorFlow、Caffe、ONNX等多种模型格式,并优化了ARM和x64 CPU及多种GPU的计算性能。通过MNN Workbench,用户可以下载预训练模型、进行可视化训练并一键部署到设备上。
tensorlayer-chinese - 基于TensorFlow的高级深度学习与增强学习开发库
GithubTensorFlowTensorLayer增强学习开源项目深度学习神经网络
TensorLayer是一个基于TensorFlow的高级深度学习与增强学习开发库,提供丰富的神经网络组件和函数,以帮助研究人员及工程师应对复杂的AI挑战。项目包含详细的中文文档,并拥有活跃的中文和英文社群,提供广泛的讨论与支持平台。
Transformer-TTS - 神经语音合成系统
GithubPyTorchTacotronTransformer-TTS开源项目神经网络语音合成
Transformer-TTS,一个基于Pytorch的高效神经语音合成系统。它使用Transformer网络,且训练速度是传统seq2seq模型的3到4倍。不仅提供预训练模型,其合成语音质量经实验证明优异。同时,项目支持自定义学习模型及策略,包括Noam式预热衰减学习率及关键的梯度裁剪等,是语音合成研究的理想选择。
TensorRT - 提升PyTorch推理效率的工具
CUDAGithubPyTorchTensorRTTorch-TensorRT安装开源项目
Torch-TensorRT将TensorRT的强大功能引入PyTorch,用户仅需一行代码即可显著提升推理性能。该工具支持在多个平台上安装,包括PyPI和NVIDIA NGC PyTorch容器。通过torch.compile或导出式工作流,用户可以高效优化和部署模型。Torch-TensorRT依赖CUDA和TensorRT,与Linux和Windows等多种平台兼容。提供丰富资源,包括教程、工具和技术讲座,供用户学习使用。
mt-dnn - 多任务深度神经网络在自然语言理解中的最新应用
GithubMT-DNNPyTorch多任务深度神经网络开源项目自然语言理解预训练模型
该项目实现了基于PyTorch的多任务深度神经网络(MT-DNN),主要用于自然语言理解。最新版本添加了语言模型预训练和微调的对抗性训练功能。用户可以使用pip安装或通过Docker快速启动,项目提供详细的训练和微调步骤,支持序列标注和问答任务。此外,项目包含模型嵌入提取和训练加速功能。目前由于政策变化,公共存储解决方案暂不提供。
TensorVox - 用 C++ 编写的神经语音合成桌面应用程序
Coqui-TTSGithubTensorFlowTTSTensorVoxVITS开源项目神经语音合成
TensorVox是为提高神经语音合成技术普及度而设计的桌面应用。支持多语言,不需庞大Python库,该工具通过TensorFlow C API和LibTorch实现轻量级操作。提供清晰易懂的模型训练和导出指南,是语音技术爱好者的顶级选择。
torchtune - PyTorch原生库助力简化大语言模型开发
GithubLLMPyTorchtorchtune开源项目微调模型训练
torchtune是一个PyTorch原生库,专为简化大语言模型(LLM)的创建、微调和实验而设计。该库提供了主流LLM的PyTorch实现、易用的微调技术配方、YAML配置文件和多种数据集格式支持。torchtune注重与生态系统工具集成,如Hugging Face、EleutherAI评估工具和PyTorch FSDP等。支持多种模型和微调方法,并优化内存效率,适配不同硬件环境。
TensorFlow.NET - 用 C# 实现完整的 Tensorflow API,允许 .NET 开发人员使用跨平台的 .NET Standard 框架开发、训练和部署机器学习模型
.NETGithubKerasTensorFlowTensorFlow.NET开源项目机器学习
TensorFlow.NET为.NET Standard框架提供了TensorFlow绑定,使.NET开发者能够使用C#或F#进行机器学习模型的开发、训练和部署。项目内置Keras高级接口,支持将Python代码无缝移植到.NET环境,适用于Windows、Linux和MacOS系统,并支持CPU和GPU版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号