Project Icon

tern

容器镜像软件物料清单生成工具

Tern是一款开源的容器镜像检查工具,用于生成软件物料清单(SBOM)。通过逐层分析容器镜像,Tern收集操作系统和软件包的元数据,生成详细报告。支持多种输出格式如人类可读、JSON和HTML,有助于深入了解容器内容、进行合规性检查和安全分析。Tern适用于容器开发者、DevOps工程师及关注容器内容的技术人员。

Tern

Pull Request Lint and Test CII Best Practices License

Welcome to the Tern Project

Tern is a software package inspection tool that can create a Software Bill of Materials (SBOM) for containers. It's written in Python3 with a smattering of shell scripts.

Table of Contents

What is Tern?

Tern is an inspection tool to find the metadata of the packages installed in a container image. The overall operation looks like this:

  1. It analyzes the first layer of the container image to collect information like distro type, package format, and package managers.
  2. It then executes scripts from the "command library" in a chroot environment to collect information about packages installed in that layer.
  3. With that information as a starting point, it continues to analyze the subsequent layers in the container image.
  4. Once done, it generates a report of packages with their metadata. Several formats are available. The report, in its default format, provides a layer by layer, explanation of the various software components imported. If a Dockerfile is provided, the report indicates the Dockerfile lines corresponding to each of the file system layers.

Tern gives you a deeper understanding of your container's bill of materials so you can make better decisions about your container based infrastructure, integration and deployment strategies. It's also a good tool if you are curious about the contents of the container images you have built.

Tern quick demo

Getting Started

GitHub Action

A GitHub Action is available if you just want to scan Docker container images to find the Base OS and packages installed. Please contribute changes here. Thanks to Jeroen Knoops @JeroenKnoops for their work on this.

Getting Started on Linux

If you have a Linux OS you will need a distro with a kernel version >= 4.0 (Ubuntu 16.04 or newer or Fedora 25 or newer are good selections) and will need to install the following requirements:

Some distro versions have all of these except attr, jq, and/or skopeo preinstalled. attr and jq are common utilities and are available via the package manager. skopeo has only recently been packaged for common Linux distros. If you don't see your distro in the list, your best bet is building from source, which is reasonably straightforward if you have Go installed.

For analyzing Dockerfiles and to use the "lock" function

NOTE: We do not provide advice on the usage of Docker Desktop

Once installed, make sure the docker daemon is running.

Create a python3 virtual environment:

python3 -m venv ternenv
cd ternenv

NOTE: Your OS might distribute each Python version separately. For example, on Ubuntu LTS, Python 2.7 is linked to python2 and Python 3.6 is linked to python3. I develop with Python 3.7 which is installed separately with no symlinks. In this case, I use the binary. The binaries are usually installed in /usr/bin/python.

Activate the virtual environment:

source bin/activate

NOTE: This specific activate script only works for Bash shells. If you need to activate a Fish Shell or C Shell you should use source bin/activate.fish or source bin/activate.csh, respectively.

Install tern:

pip install tern

Run Tern:

tern report -o output.txt -i debian:buster

Getting Started with Docker

Docker is the most widely used tool to build and run containers. If you already have Docker installed, you can run Tern by building a container with the Dockerfile provided.

Clone this repository:

git clone https://github.com/tern-tools/tern.git

Build the Docker image (called ternd here). You may need to use sudo:

docker build -f docker/Dockerfile -t ternd .

This will install the latest release of tern using pip.

If you want to build a Docker image containing the latest changes to tern, run:

python setup.py sdist
docker build -f ci/Dockerfile -t ternd .

NOTE: By default, Tern will run with logging turned on. If you would like to silent the terminal output when running the ternd container, make the following change to the Dockerfile ENTRYPOINT before building:

--- a/Dockerfile
+++ b/Dockerfile
-ENTRYPOINT ["tern"]
+ENTRYPOINT ["tern", "-q"]

Run the ternd container image

docker run --rm ternd report -i debian:buster

If you are using this container to analyze Dockerfiles and to use the "lock" feature, then you must volume mount the docker socket. We have a convenience script which will do that for you.

./docker_run.sh ternd "report -i debian:buster" > output.txt

To produce a json report run

./docker_run.sh ternd "report -f json -i debian:buster"

Tern is not distributed as Docker images yet. This is coming soon. Watch the Project Status for updates.

WARNING: If using the --driver fuse or --driver overlay2 storage driver options, then the docker image needs to run as privileged.

docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock ternd --driver fuse report -i debian:buster

You can make this change to the docker_run.sh script to make it easier.

Creating a Kubernetes Job

A Tern container can be deployed on Kubernetes as a Job. However, a host mount is required to retrieve the reports. We will describe below how to create a Kubernetes Job within minikube.

To install minikube, follow these instructions. If using a virtual machine manager, make sure it supports volume mounts. We will be using VirtualBox in this example.

Download the existing Tern Dockerfile

wget https://raw.githubusercontent.com/tern-tools/tern/main/docker/Dockerfile

Start minikube

minikube start --driver=virtualbox

Use minikube to build the Tern container image

minikube image build -t tern:test -f Dockerfile .

Once build has completed, you should see the image by running minikube image ls. It should look something like docker.io/library/tern:test.

We are now ready to create a Job. You can modify the following YAML according to your host's filesystem:

apiVersion: batch/v1
kind: Job
metadata:
  name: tern
spec:
  template:
    spec:
      restartPolicy: Never
      containers:
      - image: docker.io/library/tern:test
	# in order run the job for other containers, replace the "-i" argument here
        command: ["tern", "report", "-i", "docker.io/library/debian:buster", "-o", "/host/report.txt"]
        name: tern-example
        volumeMounts:
          - name: host-mount
            mountPath: /host # this path exists in the pod
      volumes:
      - name: host-mount # create a corresponding directory on the host
        hostPath:
          path: /path/to/tern/reports # this path must exist on the host

We can now deploy Tern on Kubernetes

minikube kubectl -- apply -f tern-example.yaml

To check the status of the Job, you can run minikube kubectl -- describe job.batch/tern. You should be able to see report.txt in /path/to/tern/reports/.

Getting Started with Vagrant

Vagrant is a tool to setup an isolated virtual software development environment. If you are using Windows or Mac OSes and want to run Tern from the command line (not in a Docker container) this is the best way to get started as Tern does not run natively in a Mac OS or Windows environment at this time.

Install

Follow the instructions on the VirtualBox website to download VirtualBox on your OS.

Follow the instructions on the website to install Vagrant for your OS.

Create a Vagrant environment

NOTE: The following steps will install the latest PyPI release version of Tern. If you want to install Tern from the tip of master, please instead follow "Setting up a development environment on Mac and Windows" in the contributing guide.

In your terminal app, run the following commands.

Clone this repository:

git clone https://github.com/tern-tools/tern.git

Bring up the Vagrant box:

cd tern/vagrant
vagrant up

SSH into the created VM:

vagrant ssh

Run:

tern report -i debian:buster -o output.txt

Using Tern

WARNING: The CLI has changed since the last release. Visit Tern's PyPI project page to find the correct CLI options or just run tern -h.

Tern creates a report containing the Software Bill of Materials (SBOM) of a container image, including notes about how it collects this information, and files for which it has no information about. Currently, Tern supports containers only built using Docker using image manifest version 2, schema 2. Docker image manifest version 2, schema 1 has been deprecated by Docker. Tern will support container images created using Docker version 19.03.0 or later. Docker is the most ubiquitous type of container image that exists so the project started with a focus on those. However, it is architected to support other images that closely follow the OCI image spec.

Generating an SBOM report for a Docker image

If you have a Docker image pulled locally and want to inspect it

tern report -i debian:jessie

The SBOM of packages that are installed in the Docker image and how Tern got this information will be printed to the console. To direct this output to a file, use the -o file_name command line option. If you encounter any errors, please file an issue.

Generating an SBOM report from a Dockerfile

You can provide a Dockerfile to Tern to figure out the Software Bill of Materials and other information. Tern will build the image, analyze it with respect to the Dockerfile and discard the image. This is useful to engineers who are developing a Dockerfile for their app or in a container build and release pipeline.

tern report -d samples/photon_git/Dockerfile

The SBOM of packages you would be shipping if you were to use the given Dockerfile will print to the console. To direct the output to a file, use the -o file_name command line option. Feel free to try this out on the other sample Dockerfiles in the samples directory or on Dockerfiles you may be working with. If it doesn't work for you, please file an issue.

Generating a locked Dockerfile

Because of the way Docker builds containers, Dockerfiles are generally not declarative or reflective of what ultimately gets included in the container image that gets produced. Pinning information in your Dockerfile (base OS, packages, etc.) can help create more reproducible container images should your Dockerfile be distributed to other parties. If you have a Dockerfile that you would like to lock to a more reproducible version, Tern can help.

tern lock Dockerfile

The locked Dockerfile will be created in Dockerfile.lock unless an output file is otherwise specified. To specify an output file

tern lock Dockerfile -o output.txt

If the packages are not pinned in the resulting Dockerfile.lock or output file that gets produced, it is because 1) Tern does not know the version of the packages to pin (i.e. unable to get this information from the package manager) or 2) your Dockerfile failed to build. In the case of a failed Dockerfile build, Tern only builds the base image and tries to pin what it can. If you encounter any errors, please file an issue.

Report Formats

Tern creates SBOM reports suitable to read over or to provide to another tool for consumption. A collection of sample reports is available to view here.

Understanding the Reports

Tern provides a handful of different reporting styles that may work better for different applications of distribution, interoperability and comprehension. Understanding these reports will vary slightly between formats, but the information in the different report formats will generally be the same with varying degrees of package metadata detail. In all report formats, information about the version of Tern that generated the report and any applicable extension information will be at the top of the report followed by information about the metadata found in the container, organized sequentially by layer.

The base layer (Layer 1) will provide operating system information on which the container is based, the Dockerfile command that created the layer, the package retrieval method and any packages found in the layer. Note that the operating system information may be different than the container that Tern is generating an SBOM for. For example, the golang container's base OS is actually Debian GNU/Linux 10 (buster). For each subsequent layer in the container, information about the Dockerfile command that created the container layer, any warnings about unrecognized Dockerfile commands, the package retrieval method and package information is provided. If Tern doesn't find any package information in a layer, it will report packages found in the layer as "None". File licenses may also be available in the reports if Tern is run using scancode.

More information about specific reporting formats can be found below and in the tern/classes directory where the properties being reported on are explained in the .py files -- specifically, image_layer.py, package.py, and file_data.py.

Human Readable Format

The default report Tern produces is a human readable, high-level overview. The object of this report is to give the container developer a deeper understanding of what is installed in a container

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号