Project Icon

distilbert-base-uncased-CoLA

DistilBERT模型在CoLA任务上的微调与应用

本项目展示了基于TextAttack框架的distilbert-base-uncased模型在CoLA(语言可接受性语料库)任务上的微调过程。模型经过5轮训练,批量大小为64,学习率为3e-05,最大序列长度为128。在第2轮训练后,模型在评估集上达到了82.36%的最佳准确率。该项目为研究者提供了一个在特定NLP任务上高效应用BERT变体模型的实例。

roberta-base-CoLA - RoBERTa模型在CoLA任务上的微调和性能分析
GithubHuggingfaceTextAttack分类任务开源项目机器学习模型模型训练自然语言处理
本项目展示了roberta-base模型在GLUE数据集的CoLA任务上的微调过程。模型经过5轮训练,使用32批量大小、2e-05学习率和128最大序列长度。采用交叉熵损失函数,模型在首轮训练后即达到85%的评估集准确率。这一结果凸显了RoBERTa模型在语言可接受性判断任务中的出色表现。
distilbert-base-uncased - 紧凑高效的语言模型,提升下游任务处理速度
DistilBERTGithubHuggingface使用限制开源项目模型模型压缩训练数据语言模型
DistilBERT是一种高效的Transformers模型,比原始BERT更小更快,适合快速推理的下游任务。通过自监督预训练,它支持掩码语言建模和句子预测。主要用于全句任务如分类和问答,尽管继承了部分原模型偏见。在海量公开数据的支持下,DistilBERT在多种任务中表现优异,兼顾性能和速度。可在模型中心查看微调版本。
distilbert-base-uncased-ag-news - 使用精简版模型增强新闻文本分类性能
GithubHuggingfaceTextAttackdistilbert-base-uncased交叉熵损失函数准确率序列分类开源项目模型
该项目通过使用TextAttack工具和ag_news数据集对distilbert-base-uncased模型进行微调,提升了文本分类的精确度。模型经过5个周期的训练,采用了32的批量大小、2e-05的学习率和128的最大序列长度。在分类任务中采用了交叉熵损失函数。模型在验证集测试中取得了0.9479的最佳准确度。详见TextAttack的GitHub页面。
distilbert-base-cased - DistilBERT:轻量高效的BERT模型,保留核心性能
BERTDistilBERTGithubHuggingface开源项目机器学习模型自然语言处理预训练模型
DistilBERT base model (cased)是BERT base model的轻量版本,通过知识蒸馏技术实现了模型压缩。它在BookCorpus和维基百科上进行自监督预训练,在保持核心性能的同时大幅减小了模型体积,加快了推理速度。这个模型主要用于微调下游NLP任务,如序列分类、标记分类和问答等。在GLUE基准测试中,DistilBERT展现出与原始BERT相当的性能,为需要效率与性能平衡的NLP应用提供了理想选择。
distilbert-base-uncased-mnli - DistilBERT零样本文本分类模型在MNLI数据集上的应用
DistilBERTGithubHuggingface开源项目文本分类机器学习模型自然语言推理零样本分类
DistilBERT零样本文本分类模型在MNLI数据集上微调,适用于多种英语文本分类任务。模型在MNLI和MNLI-mm评估中均达82.0%准确率,展现出优秀性能。虽然使用简便,但需注意潜在偏见问题。模型由Typeform团队开发,在AWS EC2 P3实例上训练。该模型为自然语言处理领域提供了有力工具,同时也引发了对AI公平性的思考。
bert-base-uncased-yelp-polarity - BERT模型基于Yelp评论数据集实现高准确率情感分析
GithubHuggingfaceTextAttackbert-base-uncased序列分类开源项目模型模型微调自然语言处理
该项目基于bert-base-uncased模型,利用TextAttack框架和yelp_polarity数据集进行微调,构建了一个文本情感分类器。经过5轮训练,模型在评估集上达到96.99%的准确率。支持最大256的序列长度,专门用于Yelp评论的情感分析。模型采用16的批次大小和5e-05的学习率,展现出优秀的性能表现。
bert-base-uncased-ag-news - 基于BERT的文本序列分类模型
GithubHuggingfaceTextAttackag_news数据集bert-base-uncased序列分类开源项目模型精度
bert-base-uncased模型通过TextAttack和ag_news数据集进行微调,专为文本序列分类任务优化。经过5轮训练并采用交叉熵损失函数,该模型在第3轮时达到了0.951的高准确率。该模型设置批量大小为16,学习率为3e-05,最大序列长度为128,适用于高效准确的文本分类任务。了解更多信息请访问TextAttack的Github页面。
distilbert-base-multilingual-cased - 提升效率的多语言轻量级BERT模型,支持104种语言
DistilBERTGithubHuggingface多语言模型开源项目模型维基百科自然语言处理迁移学习
distilbert-base-multilingual-cased是BERT基础多语言模型的轻量级版本,支持104种语言。该模型包含6层、768维度和12个头,总参数量为1.34亿。它在多语言维基百科数据上预训练,适用于掩码语言建模和各种下游任务的微调。与原版相比,这个模型在保持性能的同时将运行速度提高了一倍,为多语言自然语言处理任务提供了更高效的解决方案。
distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
distilbert-base-uncased-finetuned-sst-2-english - 基于SST-2数据集微调的DistilBERT情感分析模型达到91.3%分类准确率
DistilBERTGithubHuggingfaceSST-2开源项目文本分类机器学习模型模型偏见
这是一个在SST-2数据集上微调的DistilBERT情感分析模型,通过优化学习参数实现91.3%的分类准确率。模型支持英文文本的情感二分类,但在处理不同国家相关文本时存在潜在偏见。作为一个轻量级BERT变体,该模型在保持性能的同时显著降低了计算资源需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号