Project Icon

ViT-SO400M-14-SigLIP-384

采用SigLIP技术的大规模视觉-语言预训练模型

ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。

siglip-large-patch16-256 - SigLIP模型采用优化损失函数实现图像文本多模态任务
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是CLIP模型的改进版本,使用sigmoid损失函数进行语言-图像预训练。该模型在WebLI数据集上以256x256分辨率预训练,适用于零样本图像分类和图像-文本检索任务。通过优化损失函数,SigLIP实现了更高性能和更大批量规模。模型支持原始使用和pipeline API调用,在多项评估中展现出优于CLIP的表现。SigLIP为图像-文本多模态任务提供了新的解决方案。
siglip-base-patch16-224 - SigLIP改进CLIP模型 实现更高效的零样本图像分类和检索
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一种基于CLIP改进的多模态预训练模型,采用sigmoid损失函数优化语言-图像学习。该模型在WebLI数据集上以224x224分辨率预训练,适用于零样本图像分类和图像-文本检索任务。相比CLIP,SigLIP支持更大批量处理,且在小批量场景下表现更优。用户可通过Transformers库轻松加载和使用SigLIP模型,实现灵活高效的多模态应用。
ViT-L-14-CLIPA-datacomp1B - CLIPA-v2模型实现低成本高性能零样本图像分类
CLIPAGithubHuggingfaceOpenCLIP对比学习开源项目模型视觉语言模型零样本图像分类
ViT-L-14-CLIPA-datacomp1B是一个基于CLIPA-v2架构的视觉-语言模型,在datacomp1B数据集上训练。该模型采用对比学习方法,能够进行零样本图像分类,在ImageNet上实现81.1%的准确率。通过OpenCLIP库,用户可以方便地进行图像和文本的特征编码。这个模型不仅性能优异,还具有训练成本低的特点,为计算机视觉研究提供了新的发展方向。
siglip-large-patch16-384 - 通过改进的损失函数提升多模态图像和文本的匹配效率
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型零样本学习预训练
SigLIP模型通过改进的sigmoid损失函数在图像文本配对任务中表现优异,无需成对相似性的全局视图归一化,使批量处理更加灵活高效。适用于零样本图像分类和图像文本检索等任务,展现出优秀的可用性和扩展性。在WebLI数据集上预训练,有效提升多模态任务表现,同时保持在较低复杂性问题中的有效性。了解更多,请访问模型文档。
CLIP-ViT-bigG-14-laion2B-39B-b160k - CLIP-ViT-bigG-14模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-2BViT-bigG/14开源模型开源项目模型零样本图像分类
CLIP-ViT-bigG-14-laion2B-39B-b160k是基于LAION-2B数据集训练的大规模视觉语言模型。该模型在零样本图像分类、图像文本检索等任务中表现出色,在ImageNet-1k测试中实现80.1%的零样本top-1准确率。模型采用ViT-bigG/14架构,由stability.ai提供计算资源支持。虽然适合研究人员探索零样本分类和跨模态学习,但目前不建议直接应用于商业场景。
siglip-base-patch16-512 - 采用Sigmoid损失函数的开源计算机视觉模型
GithubHuggingfaceSigLIP图像分类图文匹配开源项目模型深度学习计算机视觉
SigLIP在CLIP架构基础上改进了损失函数设计,使用Sigmoid损失函数处理图像-文本对训练。该模型在WebLI数据集上预训练,支持512x512分辨率的图像输入,主要应用于零样本图像分类和图文检索。相比CLIP,新的损失函数无需全局相似度归一化,使模型在不同批量规模下都能保持稳定表现。
CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k - CLIP架构多语言视觉语言模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-5B图像分类多语言模型开源项目模型零样本学习
这是一个基于CLIP架构的多语言视觉语言模型,在LAION-5B数据集上训练。模型结合了冻结的ViT-H/14视觉结构和XLM-RoBERTa大型文本模型,在多语言零样本图像分类和检索任务中表现优异。适用于零样本图像分类、图文检索等应用,也支持下游任务微调。该模型在英语及其他语言中均展现出强大性能,为跨语言视觉AI应用提供了有力支持。
siglip-base-patch16-256 - 改进CLIP的多模态预训练模型SigLIP
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一个基于CLIP改进的多模态预训练模型。它使用Sigmoid损失函数,在WebLI数据集上以256x256分辨率训练。相比CLIP,SigLIP在小批量和大规模批处理中都表现更好,适用于零样本图像分类和图像-文本检索任务。模型在多个基准测试中超越了CLIP,为图像-文本预训练领域带来了新进展。
CLIP-ViT-L-14-laion2B-s32B-b82K - CLIP-ViT-L-14模型实现高效零样本图像分类和检索
CLIPGithubHuggingfaceLAION-2B图像分类开源项目模型视觉语言模型零样本学习
CLIP-ViT-L-14-laion2B-s32B-b82K模型基于LAION-2B英语数据集训练,在ImageNet-1k上实现75.3%的零样本top-1准确率。它支持零样本图像分类和图文检索等任务,是研究零样本图像分类的重要工具。该模型在JUWELS Booster超级计算机上完成训练,为计算机视觉研究提供了新的可能性。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup - CLIP ConvNeXt-XXLarge模型在零样本图像分类上的卓越性能
CLIPConvNeXtGithubHuggingface开源项目模型深度学习计算机视觉零样本图像分类
CLIP ConvNeXt-XXLarge是基于LAION-2B数据集训练的大规模视觉-语言模型。它在ImageNet零样本分类任务中实现79.4%的准确率,成为首个非ViT架构突破79%的CLIP模型。该模型结合847M参数的ConvNeXt-XXLarge图像塔和ViT-H-14规模的文本塔,在计算效率和性能间达到平衡,为视觉-语言模型研究开辟新方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号