Project Icon

ViT-SO400M-14-SigLIP-384

采用SigLIP技术的大规模视觉-语言预训练模型

ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。

vit-base-patch32-384 - Vision Transformer图像分类模型支持大规模数据训练
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。
vit_small_r26_s32_384.augreg_in21k_ft_in1k - ResNet与Vision Transformer结合的图像分类模型解析
GithubHuggingfaceImageNetViTtimm图像分类增广正则化开源项目模型
该模型结合ResNet与Vision Transformer(ViT)的特点,专用于图像分类。最初在ImageNet-21k上训练,后在ImageNet-1k上微调,并在JAX中创建,由Ross Wightman移植到PyTorch环境中。模型采用了36.5M参数和27.7M激活,针对384x384图像进行了优化,通过增强和正则化技术提升了处理复杂图像任务的能力,适用于多种图像识别应用。
japanese-clip-vit-b-16 - 日语CLIP模型实现跨模态文本图像语义匹配
CLIPGithubHuggingfaceViT-B/16japanese-clip图像识别开源项目模型深度学习
rinna公司开发的日语CLIP模型采用ViT-B/16 Transformer架构,通过CC12M数据集的日语翻译版本训练而成。该模型实现了日语文本与图像的跨模态理解和语义匹配,提供简洁的API接口,适用于图像检索和跨模态搜索等场景。作为Apache 2.0许可的开源项目,它为日语视觉语言处理领域提供了实用的基础工具。
vit_small_patch14_reg4_dinov2.lvd142m - 基于自监督学习的视觉Transformer用于图像特征提取和分类
GithubHuggingfaceVision Transformer图像分类图像特征开源项目模型深度学习自监督学习
该Vision Transformer (ViT) 图像特征模型通过自监督学习进行预训练,基于LVD-142M数据集并采用DINOv2方法。模型专为图像分类和特征提取设计,包含22.1M参数和29.6 GMAC的运算能力。其注册方法增强了处理518x518像素图像的效果,DINOv2技术有助于无监督视觉特征学习。此模型在图像嵌入应用中表现优异,并支持多种视觉分析与研究。用户可使用timm库简单调用和部署模型,适合多种机器学习场景。
CLIP-ViT-B-32-DataComp.XL-s13B-b90K - 基于DataComp-1B训练的CLIP图像分类模型
CLIPDataCompGithubHuggingface人工智能图像分类开源项目机器学习模型
CLIP ViT-B/32是一个使用DataComp-1B数据集训练的图像分类模型,在ImageNet-1k测试中达到72.7%零样本分类准确率。模型支持图像分类、图像文本检索等功能,主要面向多模态机器学习研究使用。
owlv2-large-patch14-ensemble - Google OWLv2模型实现零样本开放词汇目标检测
CLIPGithubHuggingfaceOWLv2开源项目模型自然语言处理计算机视觉零样本目标检测
OWLv2是Google开发的基于CLIP的零样本目标检测模型。它使用ViT-L/14架构和掩蔽自注意力Transformer分别处理图像和文本输入。通过端到端训练,OWLv2实现了开放词汇的物体分类和定位,可根据多个文本查询执行目标检测。该模型在公开数据集上训练,为计算机视觉研究提供了新的可能性。
vit_giant_patch14_dinov2.lvd142m - 基于Vision Transformer的无监督视觉特征提取模型
DINOv2GithubHuggingfaceVision Transformer图像分类图像特征提取开源项目模型自监督学习
该项目介绍了使用DINOv2方法的Vision Transformer(ViT)模型,通过无监督学习在LVD-142M数据集上进行预训练。这一模型适用于图像分类和嵌入,帮助提取稳健的视觉特征以及实现高效的图像识别。ViT模型的参数量为1136.5M和1784.2 GMACs,显现出其出色的性能和灵活性。用户可以在GitHub查看和下载该模型的代码和更多资源。
open_clip - 探索前沿图像与语言对比预训练技术
GithubOpenCLIP图像识别对比学习开源项目零样本学习预训练模型
OpenCLIP是一个先进的开源深度学习项目,专注于OpenAI的CLIP模型的实现和优化。该项目在多样化的数据源和不同的计算预算下成功训练出多个高效能模型,涵盖图像和文本嵌入、模型微调及新模型开发等多个领域。通过增强图像与语言的联合理解能力,OpenCLIP显著推动了人工智能技术的发展,拓宽了其应用领域。
vit-base-patch16-384 - Vision Transformer:基于图像分块的高效视觉识别模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于Transformer架构的视觉识别模型,在ImageNet-21k上进行预训练,并在ImageNet 2012上微调。模型采用图像分块和序列化处理方法,有效处理384x384分辨率的图像。ViT在多个图像分类基准测试中表现优异,适用于各种计算机视觉任务。该预训练模型为研究人员和开发者提供了快速开发高精度图像识别应用的基础。
CLIP - CLIP是一种在各种(图像、文本)对上训练的神经网络
CLIPGithubPyTorch图像识别开源项目模型训练自然语言处理
CLIP通过对比学习训练神经网络,结合图像和文本,实现自然语言指令预测。其在ImageNet零样本测试中的表现与ResNet50相当,无需使用原始标注数据。安装便捷,支持多种API,适用于零样本预测和线性探针评估,推动计算机视觉领域发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号