Project Icon

convnext_small.in12k_ft_in1k_384

高效的ConvNeXt图像分类与特征提取预训练模型介绍

ConvNeXt图像分类模型,通过timm库在ImageNet-12k及ImageNet-1k上进行预训练与微调,提供图像特征提取与分类功能。支持TPU和8xGPU训练方式,适合大规模数据集处理。模型拥有50.2M参数和25.6 GMACs,支持384x384图像输入,并兼具特征图提取与图像嵌入功能,适用于高效图像处理需求。更多性能数据及结果可在timm库查阅。

DenseNet - DenseNet高效内存卷积网络
CIFAR-10CVPR 2017DenseNetGithubImageNet开源项目模型
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
Chinese-CLIP - 中文多模态嵌入和检索性能优化的领先方案
Chinese-CLIPGithub图文特征提取开源项目模型下载跨模态检索零样本图像分类
Chinese-CLIP项目,基于大规模中文图文对数据,专门针对中文领域的特点进行优化,提供高效的图文特征计算与相似度测算,实现零样本分类和跨模态检索。该项目改进了多个模型,包括ViT与ResNet结构,并在多个公开数据集上展示了显著的性能提升,为中文处理场景下的企业和研究者提供强大工具。
nxtp - 基于下一标记预测的创新物体识别技术
AI视觉GithubObject Recognition开源项目深度学习自然语言处理计算机视觉
nxtp项目开发了一种创新的物体识别方法,将任务转化为下一标记预测。该技术利用语言模型嵌入扩展预测空间,实现开放式标签生成。通过自回归处理和高效采样,nxtp可进行大规模标签预测,如生成前100个最可能的标签。这一方法无需预定义标签集,为计算机视觉领域的物体识别提供了更灵活的解决方案。
tensorflow-image-models - 将PyTorch图像模型移植到TensorFlow的预训练模型库
GithubTensorFlow图像模型开源项目机器学习深度学习预训练权重
tensorflow-image-models是一个将PyTorch图像模型移植到TensorFlow的开源项目。它提供了多种预训练模型,包括ViT、DeiT、ResNet等,可用于图像分类和分割。该项目为开发者提供了简单的API来创建、预处理和保存/加载模型,并支持调整类别数量以适应不同任务。通过这个模型库,研究人员和开发者可以更方便地在TensorFlow中使用先进的图像模型。
t5-large - 统一文本到文本格式的大规模多语言NLP模型
GithubHuggingfaceT5多任务学习开源项目文本生成模型自然语言处理迁移学习
T5-Large是一个基于Text-To-Text Transfer Transformer架构的NLP模型,拥有7.7亿参数。该模型采用统一的文本到文本格式,能够处理机器翻译、文档摘要、问答和分类等多种任务。T5-Large在C4语料库上进行预训练,支持英语、法语、罗马尼亚语和德语,并在24项NLP任务中展现出优秀性能。这个versatile模型为各种文本处理应用提供了强大的基础。
tiny-dnn - 轻量级C++14深度学习库,适用于嵌入式系统和物联网设备
C++14Githubtiny-dnn嵌入式系统开源项目深度学习物联网设备
tiny-dnn是一个为计算资源有限的嵌入式系统和物联网设备设计的C++14深度学习库。该库无需GPU,通过TBB线程和SSE/AVX向量化实现了高效性能,在13分钟内达到了98.8%的MNIST准确率。其便携的头文件形式使其易于集成,支持多种网络层类型、激活函数、损失函数和优化算法。tiny-dnn还能导入Caffe模型,适合学习和构建神经网络应用。
siglip-so400m-patch14-384 - SigLIP模型应用sigmoid损失函数提升多模态处理能力
GithubHuggingfaceSigLIPWebLI数据集图像分类多模态模型开源项目模型零样本学习
SigLIP模型基于WebLi数据集在384x384分辨率下预训练,采用SoViT-400m架构。通过sigmoid损失函数优化CLIP模型,在零样本图像分类和图像文本检索任务中表现优异。该模型可处理更大批量,同时在小批量下也有出色表现。经16个TPU-v4芯片3天训练,为多模态任务奠定了坚实基础。
DCNv4 - 为视觉应用设计的高效算子,通过优化空间聚合和内存访问
DCNv4Github可变形卷积开源项目深度学习神经网络计算机视觉
DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。
llava-v1.6-34b-hf - 图像与文本交互的多模态AI模型
GithubHuggingfaceLLaVa-NeXTNous-Hermes-2-Yi-34B光学字符识别多模态聊天机器人开源项目模型视觉指令微调
LLaVa-NeXT模型结合大规模语言模型与视觉编码器,通过提高图像分辨率和优化数据集,增强了OCR和常识推理能力,适用于多模态对话应用场景。支持图像字幕生成和视觉问答,提供双语功能与商业许可保障。
beit-base-patch16-224-pt22k-ft22k - BEiT 基于Transformer的自监督图像分类模型
BEiTGithubHuggingfaceImageNet图像分类开源项目模型自监督学习视觉转换器
BEiT是一种基于Transformer的图像分类模型,在ImageNet-22k数据集上进行自监督预训练和微调。它采用掩码预测目标和相对位置编码,有效学习图像表示。该模型在多个图像分类基准测试中表现出色,为计算机视觉任务提供了强大的基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号