Project Icon

gmlp_s16_224.ra3_in1k

gMLP架构的ImageNet-1k图像分类模型

gmlp_s16_224.ra3_in1k是一个基于gMLP架构的图像分类模型,在ImageNet-1k数据集上训练。该模型在timm库中实现,参数量为1940万,计算量为4.4 GMACs,适用于224x224像素的图像输入。模型可用于图像分类和特征提取,支持top-5预测和图像嵌入生成。这一模型源自'Pay Attention to MLPs'研究,为计算机视觉领域提供了一种高效的MLP架构方案。

beitv2_base_patch16_224.in1k_ft_in22k - BEiT-v2架构的ImageNet-22k微调图像分类与特征提取模型
BEiT-v2GithubHuggingfaceImageNettimm图像分类开源项目机器学习模型模型
beitv2_base_patch16_224.in1k_ft_in22k是基于BEiT-v2架构的图像分类模型,在ImageNet-1k上进行自监督预训练,并在ImageNet-22k上微调。该模型拥有1.026亿参数,支持224x224像素输入,适用于图像分类和特征提取。通过timm库可轻松加载,为计算机视觉研究和应用提供强大工具。
deit_base_distilled_patch16_224.fb_in1k - DeiT图像分类模型 结合注意力蒸馏技术
DeiTGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
DeiT_base_distilled_patch16_224.fb_in1k是一个在ImageNet-1k数据集上训练的图像分类模型,采用注意力蒸馏技术优化性能。模型包含8730万个参数,支持224x224像素图像输入。除图像分类外,还可用于特征提取。通过timm库可轻松调用,适用于图像分类和嵌入向量提取。该模型在精度和效率方面表现均衡,可广泛应用于计算机视觉任务。
efficientnetv2_rw_t.ra2_in1k - EfficientNet-v2的模型特点与应用分析
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
EfficientNet-v2是一个专注于图像分类的高效模型,采用RandAugment策略在ImageNet-1k数据集上训练,具有参数少、训练快的特点。通过timm库实现,支持特征图提取和图像嵌入等多种功能。其结构设计为强大的特征骨干提供了基础。
resnetrs152.tf_in1k - ResNetRS-B模型提供的图像信息处理新选择
GithubHuggingfaceImageNetResNetRS-BTensorflowtimm图像分类开源项目模型
ResNetRS-B是一款图像分类模型,具备ReLU激活、单层7x7卷积池化和1x1卷积下采样功能。该模型由论文作者在ImageNet-1k上使用Tensorflow训练,拥有86.6M的参数量,支持320x320图像测试。其多功能性使其适用于图像分类、特征提取和图像嵌入任务,通过timm库可便捷地在Python中实现应用。
resnet18.a3_in1k - 简化且高效的图像分类模型,支持轻松集成
GithubHuggingfaceImageNetResNet图像分类开源项目模型特征提取神经网络
ResNet18的最新变体,在ImageNet-1k数据集上使用A3训练方法进行优化。模型具有ReLU激活函数、7x7卷积与池化、以及1x1卷积下采样设计,增强图像分类精度和特征提取能力,适合影像识别和深度学习项目应用。参数数量为11.7M,GMACs为0.9,适用于中小规模项目,易于集成部署。
mobilenetv3_small_050.lamb_in1k - 探索资源有效利用的MobileNet-v3图像分类模型
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
该项目展示了在ImageNet-1k上训练的MobileNet-v3图像分类模型,强调其在资源受限环境中的适用性。使用LAMB优化器和EMA权重平均化,该模型参照ResNet Strikes Back设计,通过简化预处理流程,支持图像分类、特征提取和图像嵌入等多种深度学习任务,增强模型性能。
tf_mobilenetv3_large_minimal_100.in1k - MobileNetV3轻量级图像分类模型
GithubHuggingfaceImageNetMobileNet-v3pytorchtimm图像分类开源项目模型
tf_mobilenetv3_large_minimal_100.in1k是基于MobileNet-v3架构的图像分类模型,在ImageNet-1k数据集上训练。该模型参数量为3.9M,计算复杂度为0.2 GMACs,适用于资源受限的移动设备。模型支持图像分类、特征图提取和图像嵌入等功能。最初由TensorFlow团队开发,后由Ross Wightman移植到PyTorch平台,为开发者提供了多平台使用选择。
xception41.tf_in1k - Xception架构的高效图像分类神经网络
GithubHuggingfaceImageNet-1kXceptiontimm图像分类开源项目模型深度学习
xception41.tf_in1k是一款基于Xception架构的图像分类模型,在ImageNet-1k数据集上训练而成。该模型采用深度可分离卷积技术,拥有2700万参数和9.3 GMACs的计算量,支持图像分类、特征图提取和图像嵌入等功能。通过timm库,研究者可以方便地加载预训练模型进行推理或微调。xception41.tf_in1k在维持高精度的同时优化了计算效率,适用于多种计算机视觉任务。
resnet50.a1_in1k - 基于ResNet-B架构的多功能图像分类模型
GithubHuggingfaceresnet50人工智能图像分类开源项目模型深度学习特征提取
resnet50.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积层和1x1卷积shortcut,使用LAMB优化器和BCE损失函数。它拥有2560万参数,可用于图像分类、特征提取和图像嵌入等任务。模型支持灵活的输入尺寸,在ImageNet验证集上实现了82.03%的Top-1准确率。
visformer_small.in1k - 视觉友好型Transformer图像分类模型
GithubHuggingfaceImageNet-1kVisformertimm图像分类开源项目模型深度学习模型
visformer_small.in1k是基于Visformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用视觉友好的Transformer设计,平衡了高效性和分类性能。它具有4020万参数,处理224x224尺寸图像,可用于分类任务和特征提取。研究者可通过timm库轻松使用此预训练模型进行图像分析和嵌入生成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号