Project Icon

maxvit_nano_rw_256.sw_in1k

轻量级MaxViT图像分类模型 适合边缘计算

maxvit_nano_rw_256.sw_in1k是一款轻量级图像分类模型,由Ross Wightman基于MaxViT架构设计并在ImageNet-1k数据集上训练。该模型结合MBConv卷积和自注意力机制,参数量15.45M,GMAC 4.46,在256x256输入下Top-1准确率达82.93%。其高效设计适合在边缘设备上进行快速准确的图像分类。

convit_base.fb_in1k - ConViT架构图像分类模型在ImageNet-1k上的应用
ConViTGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型深度学习
convit_base.fb_in1k是一个在ImageNet-1k数据集上训练的ConViT架构图像分类模型。该模型融合卷积神经网络和视觉Transformer技术,拥有8650万参数,计算量为17.5 GMACs。它支持224x224尺寸的输入图像,可用于图像分类和特征提取。研究者可通过timm库加载此预训练模型,进行图像分类或提取图像嵌入向量等任务。
xcit_large_24_p8_224.fb_in1k - XCiT大型模型提供强大的图像分类和特征提取能力
GithubHuggingfaceImageNetXCiT图像分类开源项目模型深度学习神经网络
xcit_large_24_p8_224.fb_in1k是一个基于XCiT架构的预训练模型,专注于图像分类和特征提取。该模型在ImageNet-1k数据集上训练,拥有1.889亿参数,处理224x224像素的图像。它在图像分类和特征嵌入任务中表现出色,适用于多种计算机视觉应用。借助timm库,研究人员和开发者可以方便地使用此模型进行推理或迁移学习。
vit_large_patch16_384.augreg_in21k_ft_in1k - 使用ImageNet数据集进行图像分类的Vision Transformer模型
GithubHuggingfaceVision Transformer图像分类开源项目模型模型比较特征提取预训练模型
该Vision Transformer模型专用于图像分类,最初在ImageNet-21k上进行扩展和正则化训练,并在ImageNet-1k上进行微调。由原作者使用JAX开发,后移植至PyTorch框架。模型的显著特点包括支持384x384图像尺寸,参数量达到304.7M,提升图像识别的准确性。该模型简化了图像分类和图像嵌入生成的过程。高效的数据增强和正则化策略进一步提升了模型性能,是计算机视觉研究与应用的有效工具。
ese_vovnet39b.ra_in1k - 高效实时的VoVNet-v2图像分类解决方案
GithubHuggingfaceImageNet-1kVoVNet-v2timm图像分类开源项目模型特征提取
VoVNet-v2是一种预训练于ImageNet-1k的图像分类模型,含高效计算和低能耗优点,并采用RandAugment优化。适用于特征骨干网络,支持图像分类、特征提取和图像嵌入。其关键性能包括24.6M参数、7.1 GMACs等。通过`timm`库,用户可以实现高效的图像分类和特征提取。模型使用ResNet Strikes Back的训练方案,提高了准确度和应用多样性。
vit_base_patch32_clip_384.openai_ft_in12k_in1k - 采用ViT技术的视觉Transformer模型
Fine-tuningGithubHuggingfaceVision Transformertimm图像分类开源项目模型预训练
这款视觉Transformer图像分类模型由OpenAI基于WIT-400M数据集使用CLIP技术预训练,并经过ImageNet-12k和ImageNet-1k数据集微调。作为一种强大的图像分类和嵌入模型,其参数量达88.3M,计算量为12.7 GMACs,设计用于384x384图像。支持通过`timm`库接口调用,满足多种视觉任务需求,在图像识别和分析领域表现出稳定性能。
fbnetc_100.rmsp_in1k - FBNetC-100:轻量级移动设备图像分类模型
FBNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型神经网络架构搜索
fbnetc_100.rmsp_in1k是基于FBNet架构的轻量级图像分类模型,在ImageNet-1k数据集上训练。该模型仅有5.6M参数和0.4 GMACs,适用于224x224图像输入,专为移动设备优化。通过timm库,可轻松实现图像分类、特征图提取和图像嵌入等功能。模型采用RMSProp优化器和指数衰减学习率,平衡了性能和效率。
tf_efficientnet_lite0.in1k - 轻量级EfficientNet-Lite模型实现高效图像分类与特征提取
EfficientNet-LiteGithubHuggingfaceImageNet-1k图像分类开源项目模型模型对比特征提取
EfficientNet-Lite0是一款专为高效图像分类和特征提取设计的模型,经过ImageNet-1k训练。该模型已被迁移至PyTorch,并利用timm库进行图像嵌入和特征图提取。在4.7M参数和0.4 GMACs的架构下,实现了高效性能与计算资源节约,适合作为多种视觉任务的解决方案。
xcit_medium_24_p8_224.fb_in1k - 基于XCiT架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kXCiT图像分类开源项目模型模型预训练深度学习
XCiT是Facebook Research开发的图像分类模型,在ImageNet-1k数据集上完成预训练。模型采用Cross-Covariance Image Transformer架构,拥有8430万参数,支持224x224图像输入分析。通过timm库实现,既可用于图像分类,也可作为特征提取器生成图像嵌入向量,为开发者提供便捷的模型加载和图像处理功能。
tinynet_e.in1k - TinyNet模型在ImageNet-1k上的应用与性能分析
GithubHuggingfaceImageNet-1ktimmtinynet_e.in1k图像分类开源项目模型特征提取
TinyNet是一个旨在优化图像分类和特征提取的模型,通过调整分辨率、深度和宽度,在ImageNet-1k上进行训练。模型参数量为2.0M,并具有低计算负荷。提供简便的代码示例以支持图像分类、特征图提取和图像嵌入,可用于多种图像处理场景。同时,通过timm库探索其指标表现,更深入了解其在神经信息处理中的应用。
efficientnet_lite0.ra_in1k - 轻量级EfficientNet模型用于图像分类和特征提取
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型深度学习
efficientnet_lite0.ra_in1k是一个在ImageNet-1k数据集上训练的轻量级图像分类模型。它使用RandAugment数据增强和RMSProp优化器,仅有4.7M参数和0.4 GMACs,适合资源受限环境。该模型支持图像分类、特征图提取和图像嵌入,通过timm库实现,提供简洁API接口,便于快速部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号