Project Icon

regnety_320.seer

RegNetY-32GF模型:自监督学习优化的图像特征提取工具

RegNetY-32GF模型经过SEER自监督学习预训练,具备卓越图像特征提取能力。其增强功能如随机深度和梯度检查点等,有助于优化处理大规模数据集。支持多种配置和预激活瓶颈块,适合多样化深度学习应用。

项目介绍:regnety_320.seer

概述

regnety_320.seer是一个用于图像特征提取和分类的模型。其基础架构为RegNetY-32GF,经过自我监督学习方法SwAV在20亿张随机互联网图像上进行预训练。SEER项目由Meta Platforms, Inc.开发,并根据SEER许可证进行使用和分发。模型实现中采用的timm库包含了一些增强特性,例如随机深度、梯度检查点、层级学习率衰减等。

模型详细信息

  • 模型类型: 图像分类/特征提取
  • 模型统计数据:
    • 参数数量(M):141.3
    • 每秒十亿次乘加运算(GMACs):32.3
    • 激活数(M):30.3
    • 图像尺寸:224 x 224
  • 相关论文:
  • 源代码: GitHub链接
  • 预训练数据集: RandomInternetImages-2B

模型使用

图像分类

通过以下代码可以实现图像分类:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('regnety_320.seer', pretrained=True)
model = model.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # 将单个图像扩展为批次为1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

以下代码展示了如何从图像中提取特征图:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'regnety_320.seer',
    pretrained=True,
    features_only=True,
)
model = model.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # 将单个图像扩展为批次为1

for o in output:
    print(o.shape)  # 输出每个特征图的形状

图像嵌入

通过以下代码可以获取图像的嵌入:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'regnety_320.seer',
    pretrained=True,
    num_classes=0,  # 移除分类层
)
model = model.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # 输出为(批次大小,特征数)形状的张量

output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)

模型对比

可以通过timm库的模型结果页面,了解该模型的数据集性能和运行时指标,进行详细的模型对比。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号