Project Icon

repvgg_a2.rvgg_in1k

RepVGG架构的轻量级图像分类模型支持多种视觉应用

repvgg_a2.rvgg_in1k是基于RepVGG架构的图像分类模型,通过ImageNet-1k数据集训练。该模型利用timm库的BYOBNet实现,允许自定义网络结构。模型参数量为28.2M,GMACs为5.7,处理224x224像素的输入图像。除图像分类外,还支持特征图提取和图像嵌入,可应用于多种计算机视觉任务。

vgg16.tv_in1k - 基于ImageNet-1k训练的VGG16图像分类模型
GithubHuggingfaceImageNetVGG图像分类开源项目模型深度学习神经网络
VGG16是一个经典的深度学习图像分类模型,基于ImageNet-1k数据集训练而成。模型包含1.384亿个参数,处理224x224像素输入图像,支持图像分类、特征图提取和图像嵌入等功能。借助timm库可实现模型的快速部署,广泛应用于计算机视觉领域。
vgg19.tv_in1k - VGG19深度卷积网络在ImageNet数据集上的图像分类与特征提取
GithubHuggingfaceImageNet-1kVGG图像分类开源项目模型深度卷积网络特征提取
针对图像识别任务,VGG19模型在ImageNet-1k数据集上采用原始的torchvision权重训练,支持224x224像素的输入图像。其140M+参数配置使得模型能够处理复杂的图像特征,包括分类、特征提取和嵌入应用,只需适用模型提供的转换配置即可实现高效部署。
vgg19_bn.tv_in1k - VGG19架构的ImageNet预训练图像分类模型
GithubHuggingfaceImageNet-1kVGGtimm图像分类开源项目模型特征提取
vgg19_bn.tv_in1k是一个在ImageNet-1k数据集上预训练的VGG19模型,拥有1.437亿参数。该模型适用于图像分类、特征提取和嵌入生成等多种计算机视觉任务。通过timm库,用户可以方便地加载和使用这个模型,实现高精度的图像识别功能。模型在保持较高计算效率的同时,还提供了多种使用方式,如图像分类、特征图提取和图像嵌入等。
ese_vovnet19b_dw.ra_in1k - VoVNet-v2轻量级图像分类模型 兼顾性能与能效
GithubHuggingfaceImageNetVoVNettimm图像分类开源项目模型特征提取
ese_vovnet19b_dw.ra_in1k是基于VoVNet-v2架构的图像分类模型,在ImageNet-1k数据集上使用RandAugment技术预训练。该模型参数量为6.5M,计算量为1.3 GMACs,适用于多种图像分类任务。除了高效的分类功能,它还可作为特征提取骨干网络,支持特征图提取和图像嵌入。模型在保持高性能的同时,优化了能耗和GPU计算效率,是一个兼顾性能与效率的轻量级选择。
repvit_m1.dist_in1k - ImageNet-1k高效图像分类与特征提取开源项目
GithubHuggingfaceImageNet-1kRepViTtimm图像分类开源项目模型特征提取
repvit_m1.dist_in1k是RepViT家族中的高效图像分类模型,专为ImageNet-1k数据集优化,应用蒸馏技术增强性能。模型参数为5.5M,0.8 GMACs,支持224x224图像尺寸。设计灵感源于对移动CNN的创新探索,结合ViT视角。详情请参考相关arXiv文献。该模型能够执行图像分类、特征提取和图像嵌入等任务,适合的研究和工程应用。
resnet18.a1_in1k - ResNet18图像分类模型 适用于多种计算机视觉任务
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
resnet18.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。它采用ReLU激活函数、单层7x7卷积等特性,支持图像分类、特征提取和嵌入等任务。该模型有1170万参数,在224x224分辨率下计算量为1.8 GMACs,可用于多种计算机视觉应用。
tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
efficientnetv2_rw_s.ra2_in1k - EfficientNetV2架构的轻量级图像分类模型
EfficientNetV2GithubHuggingfaceImageNet图像分类开源项目机器学习模型模型深度学习
基于EfficientNetV2架构的图像分类模型,通过timm框架实现,使用RandAugment数据增强和RMSProp优化器在ImageNet-1k数据集训练。模型参数量23.9M,计算量4.9 GMACs,训练分辨率288x288,测试分辨率384x384。支持图像分类、特征图提取和图像嵌入等功能。
fbnetv3_b.ra2_in1k - FBNet-v3轻量级图像分类模型支持多种应用场景
FBNet-v3GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
fbnetv3_b.ra2_in1k是基于FBNet-v3架构的轻量级图像分类模型。该模型在ImageNet-1k数据集上训练,使用RandAugment数据增强和EMA权重平均等技术。模型参数仅8.6M,GMAC为0.4,适合移动设备部署。支持图像分类、特征图提取和图像嵌入等应用,可用于多种计算机视觉任务。
rexnet_100.nav_in1k - 轻量级ReXNet图像分类模型 为资源受限场景提供高效解决方案
GithubHuggingfaceImageNet-1kReXNet图像分类开源项目模型模型比较特征提取
rexnet_100.nav_in1k是一款基于ReXNet架构的轻量级图像分类模型,在ImageNet-1k数据集上进行了预训练。该模型仅有4.8M参数和0.4 GMACs,适合在计算资源有限的环境中部署。它支持图像分类、特征图提取和图像嵌入等功能,为开发者提供多样化的应用选择。在ImageNet-1k验证集上,该模型展现出77.832%的Top-1准确率和93.886%的Top-5准确率,在轻量级模型中表现优异。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号