Project Icon

res2next50.in1k

基于Res2Net架构的高效多尺度图像分类模型

res2next50.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,参数量为2470万,计算复杂度为4.2 GMACs。它不仅可用于图像分类,还支持特征图提取和图像嵌入等任务。res2next50.in1k在性能和灵活性方面表现出色,适用于广泛的计算机视觉应用。研究人员可通过timm库便捷地使用和评估此模型。

res2net50_14w_8s.in1k - Res2Net架构的多尺度骨干网络实现高效图像分类
GithubHuggingfaceImageNetRes2Nettimm图像分类开源项目模型深度学习模型
res2net50_14w_8s.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,具有2510万参数,计算复杂度为4.2 GMACs。除图像分类外,还可作为特征提取器应用于其他计算机视觉任务。模型接受224x224像素的输入图像,并提供API支持图像分类、特征图提取和图像嵌入等功能。其高效的多尺度结构使其在保持准确性的同时降低了计算成本。
res2net101_26w_4s.in1k - Res2Net101多尺度骨干网络实现高效图像分类和特征提取
GithubHuggingfaceImageNet-1kRes2Nettimm图像分类开源项目模型特征提取
res2net101_26w_4s.in1k是基于Res2Net架构的图像分类模型,通过ImageNet-1k数据集训练而成。该模型采用多尺度设计,在图像分类和特征提取方面表现优异。它拥有4520万个参数,适用于224x224尺寸的图像处理。除图像分类外,还支持特征图提取和图像嵌入功能。研究人员和开发者可通过timm库便捷地将此模型应用于多种计算机视觉任务。
resnet50.a1_in1k - 基于ResNet-B架构的多功能图像分类模型
GithubHuggingfaceresnet50人工智能图像分类开源项目模型深度学习特征提取
resnet50.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积层和1x1卷积shortcut,使用LAMB优化器和BCE损失函数。它拥有2560万参数,可用于图像分类、特征提取和图像嵌入等任务。模型支持灵活的输入尺寸,在ImageNet验证集上实现了82.03%的Top-1准确率。
resnet50d.ra2_in1k - 基于ResNet-D架构的高效图像分类与特征提取模型
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
ResNet-D是一款在ImageNet-1k数据集训练的图像分类模型,采用ReLU激活函数和三层卷积结构,包含2560万参数。模型支持224x224尺寸训练输入和288x288测试输入,集成RandAugment增强技术,可实现图像分类、特征提取等计算机视觉任务。
resnet50_gn.a1h_in1k - ResNet-B架构图像分类模型结合先进训练方法
GithubHuggingfaceImageNetResNettimm图像分类开源项目模型神经网络
resnet50_gn.a1h_in1k是基于ResNet-B架构的图像分类模型,集成了多项先进训练技术。模型采用ReLU激活函数、单层7x7卷积与池化、1x1卷积快捷连接下采样等结构。在ImageNet-1k数据集上训练时,应用了LAMB优化器、增强型dropout、随机深度和RandAugment等方法。模型参数量为25.6M,GMACs为4.1,训练输入尺寸为224x224,测试输入尺寸为288x288。该模型可应用于图像分类、特征提取和图像嵌入等多种计算机视觉任务。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
resnest101e.in1k - ResNeSt101e 基于ResNet架构的高性能分离注意力图像分类模型
GithubHuggingfaceImageNetResNeSt图像分类开源项目模型深度学习神经网络
ResNeSt101e.in1k是一个基于ResNet架构的分离注意力网络图像分类模型,在ImageNet-1k数据集上训练。该模型拥有4830万参数,13.4 GMACs计算复杂度,支持图像分类、特征提取和图像嵌入等功能。ResNeSt101e在保持较低计算复杂度的同时提供优秀性能,适用于多种计算机视觉应用场景。
resnet101.tv_in1k - 采用ResNet101架构的高效图像分类和特征提取模型
GithubHuggingfaceImageNetresnet101.tv_in1k图像分类开源项目模型深度学习特征提取
resnet101.tv_in1k是一个基于ResNet101架构的图像分类模型,搭载ReLU激活、单层7x7卷积池化和1x1卷积下采样等特性,经过ImageNet-1k数据集训练,可用于图像特征提取和分类。在深度残差学习的加持下,该模型在特征提取和分类任务中表现突出,适合用于学术研究和商用产品开发。
resnet50.ram_in1k - ResNet50模型在ImageNet-1k上的应用与特征提取
AugMixGithubHuggingfaceImageNet-1kResNet-Btimm图像分类开源项目模型
ResNet50模型通过ReLU激活函数和7x7单层卷积实现图像分类,下采样优化采用1x1卷积。在训练过程中结合了AugMix、RandAugment与SGD优化策略,并通过余弦学习率和暖启动机制来提升在ImageNet-1k数据集上的表现。该模型由timm库实现,支持多种用途,如图像分类、特征提取和图像嵌入。
resnet152.a1h_in1k - ResNet152图像分类模型 基于ResNet Strikes Back改进架构
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
resnet152.a1h_in1k是基于ResNet Strikes Back改进的ResNet152模型。该模型采用ReLU激活函数、单层7x7卷积加池化、1x1卷积shortcut下采样等特性,在ImageNet-1k数据集上训练。模型参数量60.2M,GMACs 11.6,激活大小22.6M。288x288图像输入下Top-1准确率83.46%,Top-5准确率96.54%。可用于图像分类和特征提取。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号