Project Icon

resmlp_12_224.fb_in1k

ResMLP架构的数据高效图像分类模型

resmlp_12_224.fb_in1k是Facebook Research团队基于ResMLP架构开发的图像分类模型,在ImageNet-1k数据集上训练。该模型采用前馈网络结构,拥有1540万参数,支持224x224像素图像处理。除图像分类外,还可作为特征提取骨干网络使用。通过timm库,研究者可方便地加载预训练模型进行图像分类或特征提取。该模型展现了数据高效训练在视觉任务中的潜力,为计算机视觉领域提供了新的解决方案。

resnet34.a1_in1k - ResNet34 A1变体:轻量级高效图像分类模型
GithubHuggingfaceResNettimm图像分类开源项目模型模型训练深度学习
resnet34.a1_in1k是一种轻量级ResNet变体,在ImageNet-1k上训练。该模型采用ResNet-B架构,结合ReLU激活、7x7卷积和1x1短路下采样。训练过程使用LAMB优化器、BCE损失和余弦学习率。作为通用骨干网络,它适用于图像分类、特征提取和嵌入生成,在维持性能的同时显著降低了计算复杂度。
mnasnet_100.rmsp_in1k - MNasNet轻量级移动端图像分类模型
GithubHuggingfaceImageNet-1kMNasNettimm图像分类开源项目模型神经网络架构
mnasnet_100.rmsp_in1k是基于MNasNet架构的轻量级图像分类模型,针对移动设备优化设计。该模型在ImageNet-1k数据集上训练,通过timm库实现。它采用RMSProp优化器和指数衰减学习率,参数量为4.4M,GMACs为0.3,适用于224x224像素图像。模型支持图像分类、特征提取和嵌入等功能,为移动端AI应用提供高效解决方案。
deit_base_patch16_224.fb_in1k - 基于Transformer架构的DeiT图像分类模型
DeiTGithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习神经网络
deit_base_patch16_224.fb_in1k是一款基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有8660万参数,支持224x224像素图像处理,可用于图像分类和嵌入向量生成。通过数据高效训练方法和注意力蒸馏技术,该模型在减少大规模数据依赖的同时保持了高性能。研究人员和开发者可以利用timm库轻松应用此模型进行推理或特征提取。
resnet152d.ra2_in1k - ResNet152d.ra2_in1k模型在图像分类中的应用与特点
GithubHuggingfaceImageNet-1kRandAugmentResNet-Dtimm图像分类开源项目模型
ResNet152d.ra2_in1k是基于ResNet-D架构的图像分类模型,采用ReLU激活和三层3x3卷积stem结构。该模型在ImageNet-1k上训练,并使用RandAugment RA2策略、RMSProp优化器和EMA权重平均进行优化,支持动态学习率调度和特征映射提取,其性能在复杂图像处理任务中表现优秀。
convnext_base.fb_in22k_ft_in1k_384 - 高效的ConvNeXt图像分类解决方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型对比特征提取
ConvNeXt图像分类模型经过ImageNet-22k的预训练和ImageNet-1k的微调,以384x384分辨率高效执行分类任务。拥有88.6M参数和45.2 GMACs,支持图像分类、特征提取和图像嵌入等功能。适用于多种机器学习任务,其高分辨率处理能力使其在深度学习领域具有良好表现。
dpn107.mx_in1k - Dual-Path Networks图像分类模型:ImageNet-1k数据集的高性能解决方案
DPNGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
dpn107.mx_in1k是一款基于Dual-Path Networks架构的图像分类模型,针对ImageNet-1k数据集优化。该模型拥有8690万参数和18.4 GMACs计算量,支持224x224像素的图像输入。最初由论文作者在MXNet框架上训练,后经Ross Wightman移植至PyTorch。除图像分类外,还可用于特征图提取和图像嵌入,为各种计算机视觉应用提供有力支持。
tf_efficientnetv2_s.in21k_ft_in1k - EfficientNet-v2图像分类模型 基于双重ImageNet数据集训练
EfficientNet-v2GithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
这是一个基于EfficientNet-v2架构的图像分类模型,采用ImageNet-21k预训练和ImageNet-1k微调策略。模型参数量为2150万,计算量为5.4 GMACs,支持图像分类、特征提取和图像嵌入等多种应用。训练采用300x300分辨率,测试时提升至384x384,在性能和效率之间实现良好平衡。该模型最初由论文作者在Tensorflow中实现,后由Ross Wightman移植至PyTorch框架。
resnet18.a3_in1k - 简化且高效的图像分类模型,支持轻松集成
GithubHuggingfaceImageNetResNet图像分类开源项目模型特征提取神经网络
ResNet18的最新变体,在ImageNet-1k数据集上使用A3训练方法进行优化。模型具有ReLU激活函数、7x7卷积与池化、以及1x1卷积下采样设计,增强图像分类精度和特征提取能力,适合影像识别和深度学习项目应用。参数数量为11.7M,GMACs为0.9,适用于中小规模项目,易于集成部署。
tf_efficientnet_b0.in1k - 基于EfficientNet架构的tf_efficientnet_b0.in1k模型解析
EfficientNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
tf_efficientnet_b0.in1k是一个基于EfficientNet架构的图像分类模型,在ImageNet-1k数据集上使用Tensorflow训练,并由Ross Wightman移植到PyTorch。该模型具有5.3M参数和0.4 GMACs,支持细节丰富的224x224像素图像应用。其功能包括图像分类、特征映射提取和图像嵌入,非常适合在timm库中进行各种深度学习研究和应用,提供一种高效的图像处理方案。
inception_v3.gluon_in1k - Inception-v3架构的图像分类与特征提取模型
GithubHuggingfaceImageNetInception-v3timm图像分类开源项目模型特征提取
该模型基于Inception-v3架构,在ImageNet-1k数据集上训练,拥有2380万参数,支持299x299图像输入。除图像分类外,还可用于特征图提取和图像嵌入。通过timm库,研究者和开发者可轻松应用此预训练模型于各类计算机视觉任务。模型由MxNet GLUON团队开发,为图像处理领域提供了强大工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号