Project Icon

tf_efficientnetv2_xl.in21k_ft_in1k

EfficientNet-v2开源图像分类与特征抽取模型

EfficientNet-v2模型在ImageNet-21k上预训练并在ImageNet-1k上微调,具备图像分类、特征提取与图像嵌入功能。初始使用Tensorflow训练,后由Ross Wightman移植至PyTorch。模型拥有208.1百万参数与52.8 GMACs计算量,支持训练时384x384与测试时512x512的图像尺寸。通过timm库,便可创建预训练模型,用于图像分类及特征映射。本模型在研究与应用中表现出强大的性能及灵活性。

resnet18.a1_in1k - ResNet18图像分类模型 适用于多种计算机视觉任务
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
resnet18.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。它采用ReLU激活函数、单层7x7卷积等特性,支持图像分类、特征提取和嵌入等任务。该模型有1170万参数,在224x224分辨率下计算量为1.8 GMACs,可用于多种计算机视觉应用。
convnextv2_large.fcmae - 用于图像特征提取的自监督卷积模型
ConvNeXt-V2GithubHuggingfaceImageNet-1k图像分类开源项目模型特征提取自监督学习
ConvNeXt-V2是一种运用全卷积掩码自动编码器框架进行预训练的自监督特征表示模型,适用于微调和特征提取。模型适用于图像分类、特征图提取和图像嵌入,具备较高的参数和计算效率,可在ImageNet-1k等大规模数据集上展现出色表现。通过timm库加载,模型提供了处理多种图像任务的灵活性与精确度,是计算机视觉领域的重要工具。
gen-efficientnet-pytorch - 泛型EfficientNet和其它高效PyTorch模型的实现
EfficientNetGithubMixNetMobileNetPyTorch开源项目模型
本项目实现了EfficientNet、MixNet、MobileNetV3等多种高效模型,利用通用架构定义支持多种计算高效的神经网络。所有模型均基于MobileNet V1/V2块序列设计,并支持字符串化架构配置。请注意,该项目现已停止维护,推荐使用`timm`库获取更多功能和权重兼容的模型。
vit_tiny_patch16_224.augreg_in21k - 增强与正则化的ViT图像分类模型
GithubHuggingfaceImageNet-21kVision Transformer图像分类开源项目数据增强模型特征骨干
这是一个高效的Vision Transformer(ViT)图像分类模型,经过增强和正则化,在ImageNet-21k上进行了训练。由论文作者在JAX中开发,并由Ross Wightman移植到PyTorch。模型的类型包括图像分类和特征提取,参数量为9.7百万,1.1 GMACs,处理图像尺寸为224x224。项目中有图像分类和嵌入的代码示例,以及支持特定数据转换的功能,提升模型性能。该模型适用于高效图像识别应用,并提供开发者比较参考的方法。
mobilevitv2_075.cvnets_in1k - MobileViT-v2:高效的移动视觉变换器图像分类解决方案
GithubHuggingfaceImageNet-1kMobileViT-v2Separable Self-attention图像分类开源项目模型特征提取
MobileViT-v2是一个高效的移动视觉变换器模型,利用分离自注意力机制优化了图像分类与特征提取。经过ImageNet-1k数据集训练,该模型适配多种计算机视觉任务。模型规格包括2.9M参数和1.1 GMAC,支持256x256图像输入。借助timm库,模型可轻松集成至移动设备的视觉处理应用中。
regnety_120.sw_in12k_ft_in1k - 高级图像分类模型,优化大规模数据集的性能
GithubHuggingfaceRegNetY图像分类开源项目数据集模型特征提取预训练
RegNetY-12GF模型致力于图像分类,先在ImageNet-12k上预训练,再在ImageNet-1k上微调。其结构支持多项增强功能,如随机深度和梯度检查点,提高模型准确性和效率。基于timm库实现,广泛用于特征图提取和图像嵌入,适用于多种图像处理场景。
ffcv-imagenet - 高效ImageNet训练框架提升模型性能
GithubImageNetPyTorchResNetffcv开源项目深度学习
ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。
vit_base_patch16_224.augreg_in21k - 基于ImageNet-21k训练的Vision Transformer图像分类模型
GithubHuggingfaceImageNet-21kVision Transformertimm图像分类开源项目模型模型嵌入
这是一个基于Vision Transformer架构的图像分类模型,在ImageNet-21k数据集上训练。模型采用额外的数据增强和正则化技术,参数量1.026亿,处理224x224像素图像。除图像分类外,还可用作特征提取器生成图像嵌入。基于PyTorch实现,提供简洁API,适用于多种计算机视觉任务。模型由Google Research开发,Ross Wightman将其移植到PyTorch。
resnet50.a1_in1k - 基于ResNet-B架构的多功能图像分类模型
GithubHuggingfaceresnet50人工智能图像分类开源项目模型深度学习特征提取
resnet50.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积层和1x1卷积shortcut,使用LAMB优化器和BCE损失函数。它拥有2560万参数,可用于图像分类、特征提取和图像嵌入等任务。模型支持灵活的输入尺寸,在ImageNet验证集上实现了82.03%的Top-1准确率。
repvit_m1.dist_in1k - ImageNet-1k高效图像分类与特征提取开源项目
GithubHuggingfaceImageNet-1kRepViTtimm图像分类开源项目模型特征提取
repvit_m1.dist_in1k是RepViT家族中的高效图像分类模型,专为ImageNet-1k数据集优化,应用蒸馏技术增强性能。模型参数为5.5M,0.8 GMACs,支持224x224图像尺寸。设计灵感源于对移动CNN的创新探索,结合ViT视角。详情请参考相关arXiv文献。该模型能够执行图像分类、特征提取和图像嵌入等任务,适合的研究和工程应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号