Project Icon

visformer_small.in1k

视觉友好型Transformer图像分类模型

visformer_small.in1k是基于Visformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用视觉友好的Transformer设计,平衡了高效性和分类性能。它具有4020万参数,处理224x224尺寸图像,可用于分类任务和特征提取。研究者可通过timm库轻松使用此预训练模型进行图像分析和嵌入生成。

deit_base_patch16_224.fb_in1k - 基于Transformer架构的DeiT图像分类模型
DeiTGithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习神经网络
deit_base_patch16_224.fb_in1k是一款基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有8660万参数,支持224x224像素图像处理,可用于图像分类和嵌入向量生成。通过数据高效训练方法和注意力蒸馏技术,该模型在减少大规模数据依赖的同时保持了高性能。研究人员和开发者可以利用timm库轻松应用此模型进行推理或特征提取。
dm_nfnet_f0.dm_in1k - NFNet:无归一化层的高效图像分类模型
GithubHuggingfaceImageNet-1kNFNettimm图像分类开源项目模型特征提取
dm_nfnet_f0.dm_in1k是一款基于NFNet(无归一化网络)架构的图像分类模型。该模型在ImageNet-1k数据集上训练,拥有7150万参数,计算量为7.2 GMACs。通过采用Scaled Weight Standardization技术和策略性放置的标量增益,该模型无需使用归一化层即可实现高性能。dm_nfnet_f0.dm_in1k适用于图像分类、特征提取和图像嵌入等多种任务,为大规模图像识别应用提供了高效解决方案。
xcit_large_24_p8_224.fb_in1k - XCiT大型模型提供强大的图像分类和特征提取能力
GithubHuggingfaceImageNetXCiT图像分类开源项目模型深度学习神经网络
xcit_large_24_p8_224.fb_in1k是一个基于XCiT架构的预训练模型,专注于图像分类和特征提取。该模型在ImageNet-1k数据集上训练,拥有1.889亿参数,处理224x224像素的图像。它在图像分类和特征嵌入任务中表现出色,适用于多种计算机视觉应用。借助timm库,研究人员和开发者可以方便地使用此模型进行推理或迁移学习。
twins_pcpvt_base.in1k - Twins-PCPVT基础模型在ImageNet-1k上的图像分类应用
GithubHuggingfaceImageNetTwins-PCPVTtimm图像分类开源项目模型深度学习模型
twins_pcpvt_base.in1k是基于Twins-PCPVT架构的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有4380万参数,采用创新的空间注意力机制,适用于图像分类和特征提取任务。模型可通过timm库加载,支持直接推理或进一步微调。其在224x224图像输入下的计算量为6.7 GMACs,激活量为2520万。
ese_vovnet39b.ra_in1k - 高效实时的VoVNet-v2图像分类解决方案
GithubHuggingfaceImageNet-1kVoVNet-v2timm图像分类开源项目模型特征提取
VoVNet-v2是一种预训练于ImageNet-1k的图像分类模型,含高效计算和低能耗优点,并采用RandAugment优化。适用于特征骨干网络,支持图像分类、特征提取和图像嵌入。其关键性能包括24.6M参数、7.1 GMACs等。通过`timm`库,用户可以实现高效的图像分类和特征提取。模型使用ResNet Strikes Back的训练方案,提高了准确度和应用多样性。
vit_base_patch16_224.augreg_in21k - 基于ImageNet-21k训练的Vision Transformer图像分类模型
GithubHuggingfaceImageNet-21kVision Transformertimm图像分类开源项目模型模型嵌入
这是一个基于Vision Transformer架构的图像分类模型,在ImageNet-21k数据集上训练。模型采用额外的数据增强和正则化技术,参数量1.026亿,处理224x224像素图像。除图像分类外,还可用作特征提取器生成图像嵌入。基于PyTorch实现,提供简洁API,适用于多种计算机视觉任务。模型由Google Research开发,Ross Wightman将其移植到PyTorch。
edgenext_small.usi_in1k - 轻量级CNN-Transformer混合模型EdgeNeXt用于移动视觉应用
EdgeNeXtGithubHuggingfaceImageNet图像分类开源项目模型特征提取神经网络
edgenext_small.usi_in1k是一款轻量级CNN-Transformer混合模型,针对移动视觉应用优化。该模型在ImageNet-1k数据集上训练,参数量为5.6M,GMACs为1.3。它支持图像分类、特征图提取和图像嵌入等功能,结合CNN和Transformer优势,在保持性能的同时减少计算资源需求,适合在资源受限的移动设备上运行。
resnet101.tv_in1k - 采用ResNet101架构的高效图像分类和特征提取模型
GithubHuggingfaceImageNetresnet101.tv_in1k图像分类开源项目模型深度学习特征提取
resnet101.tv_in1k是一个基于ResNet101架构的图像分类模型,搭载ReLU激活、单层7x7卷积池化和1x1卷积下采样等特性,经过ImageNet-1k数据集训练,可用于图像特征提取和分类。在深度残差学习的加持下,该模型在特征提取和分类任务中表现突出,适合用于学术研究和商用产品开发。
mobilevitv2_075.cvnets_in1k - MobileViT-v2:高效的移动视觉变换器图像分类解决方案
GithubHuggingfaceImageNet-1kMobileViT-v2Separable Self-attention图像分类开源项目模型特征提取
MobileViT-v2是一个高效的移动视觉变换器模型,利用分离自注意力机制优化了图像分类与特征提取。经过ImageNet-1k数据集训练,该模型适配多种计算机视觉任务。模型规格包括2.9M参数和1.1 GMAC,支持256x256图像输入。借助timm库,模型可轻松集成至移动设备的视觉处理应用中。
mobilevit_xs.cvnets_in1k - MobileViT 轻量级通用移动友好的视觉Transformer
GithubHuggingfaceImageNet-1kMobileViTtimm图像分类开源项目模型特征提取
MobileViT是一种轻量级视觉Transformer模型,专为移动设备设计。mobilevit_xs.cvnets_in1k版本在ImageNet-1k数据集上训练,仅有2.3M参数和1.1 GMACs计算量。该模型适用于图像分类、特征提取和嵌入生成等任务,平衡了性能和资源消耗。它融合了MobileNet的轻量化结构和Vision Transformer的强大特性,为资源受限环境提供了高效解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号