Project Icon

vit_base_patch32_clip_384.openai_ft_in12k_in1k

采用ViT技术的视觉Transformer模型

这款视觉Transformer图像分类模型由OpenAI基于WIT-400M数据集使用CLIP技术预训练,并经过ImageNet-12k和ImageNet-1k数据集微调。作为一种强大的图像分类和嵌入模型,其参数量达88.3M,计算量为12.7 GMACs,设计用于384x384图像。支持通过`timm`库接口调用,满足多种视觉任务需求,在图像识别和分析领域表现出稳定性能。

ViT-Prisma - 视觉变换器和CLIP模型机制解析开源库
GithubVision Transformer图像处理开源库开源项目机器学习解释性神经网络可视化
ViT-Prisma是一个专注于Vision Transformer和CLIP模型的开源机制解析库。它提供logit归因、注意力可视化和激活修补等技术,用于深入分析模型内部机制。该库还包含ViT训练代码和预训练模型,支持ImageNet-1k和dSprites分类任务。ViT-Prisma为视觉模型可解释性研究提供了实用的工具集。
ViT-B-16-SigLIP-256 - WebLI数据集训练的SigLIP图像-文本对比学习模型
GithubHuggingfaceSigLIPWebLI图像分类图像文本对比开源项目模型模型使用
ViT-B-16-SigLIP-256是基于WebLI数据集训练的SigLIP模型,支持零样本图像分类。该模型兼容OpenCLIP和timm库,通过对比学习生成图像和文本特征表示。它能够计算图像与文本标签的相似度,适用于灵活的图像分类和检索应用。SigLIP采用Sigmoid损失函数进行语言-图像预训练,提高了模型性能。
siglip-so400m-patch14-384 - SigLIP模型应用sigmoid损失函数提升多模态处理能力
GithubHuggingfaceSigLIPWebLI数据集图像分类多模态模型开源项目模型零样本学习
SigLIP模型基于WebLi数据集在384x384分辨率下预训练,采用SoViT-400m架构。通过sigmoid损失函数优化CLIP模型,在零样本图像分类和图像文本检索任务中表现优异。该模型可处理更大批量,同时在小批量下也有出色表现。经16个TPU-v4芯片3天训练,为多模态任务奠定了坚实基础。
SPViT - 单路径自注意力剪枝,提升ViT模型效率的新方法
GithubSPViT卷积层开源项目模型剪枝自注意力机制视觉Transformer
SPViT项目提出了一种单路径自注意力剪枝方法,将预训练ViT模型中的自注意力层剪枝为卷积层,形成混合模型结构。该方法通过权重共享机制降低了模型搜索成本,在减少计算资源消耗的同时保持了模型性能。实验表明,SPViT在多个基准测试中表现良好,为Vision Transformer模型的优化设计提供了新思路。
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k - 高效图像分类与特征提取模型 支持移动设备应用
GithubHuggingfaceImageNetMobileNetV4timm图像分类开源项目模型预训练模型
MobileNet-V4图像分类模型经过ImageNet-12k预训练和ImageNet-1k精细调整,优化了参数和图像处理能力。该模型适用于移动设备,并支持特征提取和图像嵌入。凭借出色的Top-1准确率和参数效率,它在同类模型中表现突出,提供快速准确的图像识别能力。
GiT - 通用视觉Transformer模型实现多任务统一
GiTGithub多任务学习开源项目视觉Transformer计算机视觉语言接口
GiT是一种通用视觉Transformer模型,采用单一ViT架构处理多种视觉任务。该模型设计简洁,无需额外视觉编码器和适配器。通过统一语言接口,GiT实现了从目标检测到图像描述等多任务能力。在多任务训练中,GiT展现出任务间协同效应,性能超越单任务训练且无负迁移。GiT在零样本和少样本测试中表现优异,并随模型规模和数据量增加而持续提升性能。
tf_efficientnetv2_xl.in21k_ft_in1k - EfficientNet-v2开源图像分类与特征抽取模型
EfficientNet-v2GithubHuggingfaceImageNet-21kTensorFlowtimm图像分类开源项目模型
EfficientNet-v2模型在ImageNet-21k上预训练并在ImageNet-1k上微调,具备图像分类、特征提取与图像嵌入功能。初始使用Tensorflow训练,后由Ross Wightman移植至PyTorch。模型拥有208.1百万参数与52.8 GMACs计算量,支持训练时384x384与测试时512x512的图像尺寸。通过timm库,便可创建预训练模型,用于图像分类及特征映射。本模型在研究与应用中表现出强大的性能及灵活性。
owlv2-large-patch14-ensemble - Google OWLv2模型实现零样本开放词汇目标检测
CLIPGithubHuggingfaceOWLv2开源项目模型自然语言处理计算机视觉零样本目标检测
OWLv2是Google开发的基于CLIP的零样本目标检测模型。它使用ViT-L/14架构和掩蔽自注意力Transformer分别处理图像和文本输入。通过端到端训练,OWLv2实现了开放词汇的物体分类和定位,可根据多个文本查询执行目标检测。该模型在公开数据集上训练,为计算机视觉研究提供了新的可能性。
ViT-L-16-HTxt-Recap-CLIP - 对比图文模型在零样本图像分类中的新进展
CLIPGithubHuggingfaceLLaMA-3图像分类对比学习开源项目数据集偏见模型
这个模型利用Recap-DataComp-1B数据集训练,旨在实现零样本图像分类。通过OpenCLIP库,用户能够编码和分类图像与文本。模型的数据源自网络抓取并经过重新标注,可能会包含偏见或不准确之处,请在使用时注意这些风险。更多数据集详情可以查阅数据集卡片页面。
blip-image-captioning-large - BLIP框架驱动的先进图像描述模型
BLIPGithubHuggingface图像描述多模态学习开源项目模型自然语言处理视觉语言预训练
blip-image-captioning-large是基于BLIP框架的图像描述模型,采用ViT大型骨干网络和COCO数据集预训练。它支持条件和无条件图像描述,在图像-文本检索、图像描述和视觉问答等任务中表现卓越。该模型具有出色的泛化能力,支持CPU和GPU(含半精度)推理,为图像理解和生成研究提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号