Project Icon

vit_small_patch8_224.dino

基于自监督DINO的图像特征提取Transformer

项目提供了一种自监督DINO方法的Vision Transformer模型,用于图像特征提取。具有21.7M参数和16.8 GMACs运算量,预训练数据为ImageNet-1k。适用于多种视觉任务,支持通过PyTorch和timm库实现,确保高效处理。这项技术在视觉Transformer领域表现出色。

vit_base_patch16_224.orig_in21k_ft_in1k - 基于ImageNet大规模数据集的Vision Transformer模型
GithubHuggingfaceImageNetPyTorchVision Transformertimm图像分类开源项目模型
该Vision Transformer模型经过ImageNet-21k数据集预训练并在ImageNet-1k上微调,采用86.6M参数,适用于224x224图像的分类与特征提取。最初由论文作者在JAX上训练,并由Ross Wightman移植到PyTorch环境,可应用于图像分类和嵌入场景。
vit_base_patch16_224.orig_in21k - Vision Transformer图像特征提取模型无分类头版本
GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取预训练模型
vit_base_patch16_224.orig_in21k是一个基于Vision Transformer架构的图像特征提取模型,在ImageNet-21k数据集上预训练。模型采用16x16图像块处理,支持224x224输入尺寸,包含8580万参数。移除分类头设计使其专注于特征提取,适合迁移学习和微调。通过timm库可轻松应用于图像分类和特征提取任务,为计算机视觉研究提供有力支持。
vit_small_patch16_224.augreg_in21k_ft_in1k - 视觉Transformer模型实现图像分类与特征提取
GithubHuggingfaceImageNetViT图像分类开源项目模型深度学习神经网络
vit_small_patch16_224.augreg_in21k_ft_in1k是一个经过ImageNet-21k预训练和ImageNet-1k微调的Vision Transformer模型。它采用额外数据增强和正则化技术,适用于图像分类和特征提取。该模型拥有2210万参数,支持224x224图像输入,可通过timm库轻松加载使用。模型原始在JAX训练,后由Ross Wightman移植至PyTorch,为计算机视觉任务提供了强大的基础工具。
vit_tiny_patch16_224.augreg_in21k_ft_in1k - 基于ViT架构的轻量级图像分类与特征提取模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型特征提取
vit_tiny_patch16_224.augreg_in21k_ft_in1k是一个轻量级Vision Transformer模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。它拥有570万参数,能处理224x224尺寸的图像,在保持高效性能的同时提供准确的视觉分析能力。
vit_base_patch16_384.augreg_in21k_ft_in1k - Vision Transformer用于图像分类和特征提取的先进模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
此Vision Transformer模型专注于图像分类和特征提取任务。经ImageNet-21k预训练和ImageNet-1k微调,采用先进的数据增强和正则化方法。支持384x384像素输入,拥有8690万参数。不仅可进行图像分类,还能生成图像嵌入。源自Google Research,经Ross Wightman移植到PyTorch,现已成为timm库的重要组成部分。
vit_base_patch8_224.augreg2_in21k_ft_in1k - 基于Vision Transformer的ImageNet预训练图像分类模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型神经网络
vit_base_patch8_224.augreg2_in21k_ft_in1k是一个基于Vision Transformer架构的图像分类模型。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。模型包含8665万个参数,支持224x224像素的输入图像,可用于图像分类和特征提取。通过timm库,用户可以便捷地加载和使用该模型进行推理或继续训练。
vit-huge-patch14-224-in21k - 大型视觉Transformer模型实现高效图像识别与特征提取
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
vit-huge-patch14-224-in21k是基于ImageNet-21k数据集预训练的大型视觉Transformer模型。它将图像分割为固定大小的块,通过Transformer编码器处理,可用于图像分类等多种计算机视觉任务。该模型提供了强大的图像特征提取能力,适用于各类下游视觉应用。
vit-base-patch32-224-in21k - Vision Transformer模型在2100万图像数据集上预训练
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一种基于transformer架构的视觉模型,在ImageNet-21k数据集上预训练。该模型将图像转换为固定大小的patch序列,通过线性嵌入和位置编码输入transformer编码器。ViT可应用于图像分类等多种视觉任务,只需在预训练编码器上添加任务特定层。模型在224x224分辨率下训练,批量大小为4096,在多项图像分类基准测试中展现出优秀性能。
deit-small-patch16-224 - 数据高效的图像Transformer模型,用于精炼图像分类
DeiTGithubHuggingfaceImageNet-1kVision Transformer图像分类开源项目模型预训练
Data-efficient Image Transformer(DeiT)小型模型在ImageNet-1k上经过预训练和微调。该模型通过高效的预训练方法和识别精确的标签蒸馏技术实现了性能与效率的平衡。DeiT-small在ImageNet中实现79.9%的top-1准确率,支持PyTorch平台,适合图像分类任务,并可以通过ViTModel或ViTForImageClassification进行应用。
vit-base-patch32-384 - Vision Transformer图像分类模型支持大规模数据训练
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号