Project Icon

vit_small_patch8_224.dino

基于自监督DINO的图像特征提取Transformer

项目提供了一种自监督DINO方法的Vision Transformer模型,用于图像特征提取。具有21.7M参数和16.8 GMACs运算量,预训练数据为ImageNet-1k。适用于多种视觉任务,支持通过PyTorch和timm库实现,确保高效处理。这项技术在视觉Transformer领域表现出色。

samvit_base_patch16.sa1b - 高效的图像特征提取与分类工具
GithubHuggingfaceVision Transformersamvit_base_patch16.sa1b图像分类图像特征提取开源项目模型预训练
Segment-Anything Vision Transformer(SAM ViT)模型专注于图像特征提取与分类,不含分割头。使用MAE权重进行初始化,并通过SA-1B数据集的预训练,展示出89.7M的参数量及486.4 GMACs的计算性能,适宜处理1024x1024图像。Python代码示例提供了图像分类与嵌入应用方式,用户可通过timm库使用预训练模型‘samvit_base_patch16.sa1b’以提升图像分析效率。
vit_base_patch32_clip_384.openai_ft_in12k_in1k - 采用ViT技术的视觉Transformer模型
Fine-tuningGithubHuggingfaceVision Transformertimm图像分类开源项目模型预训练
这款视觉Transformer图像分类模型由OpenAI基于WIT-400M数据集使用CLIP技术预训练,并经过ImageNet-12k和ImageNet-1k数据集微调。作为一种强大的图像分类和嵌入模型,其参数量达88.3M,计算量为12.7 GMACs,设计用于384x384图像。支持通过`timm`库接口调用,满足多种视觉任务需求,在图像识别和分析领域表现出稳定性能。
deit-base-patch16-224 - DeiT高效视觉Transformer 创新图像分类模型
DeiTGithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习
DeiT是一种高效训练的视觉Transformer模型,在ImageNet-1k数据集上预训练和微调。采用创新的数据高效方法,以较少计算资源实现出色图像分类性能。支持224x224分辨率输入,Top-1准确率达81.8%。可直接用于图像分类或作为下游视觉任务的特征提取器。该模型在保持ViT架构优势的同时,显著提高了训练效率和分类精度。
swinv2-tiny-patch4-window8-256 - 基于分层特征图的轻量级视觉Transformer模型
GithubHuggingfaceImageNetSwin Transformer v2图像分类开源项目模型深度学习计算机视觉
Swin Transformer V2是一个在ImageNet-1k数据集上预训练的视觉模型,采用分层特征图结构和局部窗口注意力机制,实现线性计算复杂度。模型整合了残差后归一化和余弦注意力等技术,在保持256x256分辨率输入的同时,提供了稳定的图像分类和特征提取能力。
deit-base-distilled-patch16-224 - DeiT模型通过蒸馏技术提升ImageNet图像分类性能
DeiTGithubHuggingfaceImageNet图像分类开源项目模型蒸馏视觉Transformer
DeiT-base-distilled-patch16-224是一种基于Vision Transformer的图像分类模型,通过蒸馏技术从CNN教师模型中学习。该模型在ImageNet-1k数据集上进行预训练和微调,在224x224分辨率下实现83.4%的top-1准确率。模型采用16x16图像块嵌入和蒸馏token,适用于多种计算机视觉任务,尤其在图像分类领域表现优异。
vit_base_patch16_clip_384.laion2b_ft_in12k_in1k - LAION-2B预训练的Vision Transformer图像分类模型
GithubHuggingfaceImageNetLAION-2BVision Transformer图像分类开源项目模型深度学习
该模型基于Vision Transformer架构,在LAION-2B数据集上预训练,随后在ImageNet-12k和ImageNet-1k上微调。模型接受384x384像素的输入图像,包含8690万个参数。除图像分类外,还可用于生成图像特征嵌入。通过timm框架实现,提供灵活配置和简便使用,适用于多种计算机视觉任务。
vit_large_patch14_clip_224.openai_ft_in12k_in1k - 视觉变压器用于图像分类和特征嵌入的高级应用
CLIPGithubHuggingfaceVision TransformerWIT-400M图像分类开源项目模型模型比较
OpenAI开发的视觉变压器(ViT)模型在WIT-400M图像文本对上通过CLIP进行预训练,并在ImageNet-12k和ImageNet-1k上微调,适用于图像分类与特征嵌入生成。模型运行在timm库中,具有高参数量与计算效率,适用于高精度图像识别,支持实时与批量处理应用。
swinv2-base-patch4-window8-256 - 增强视觉Transformer模型,提供升级的容量与图像分辨率
GithubHuggingfaceImageNetSwin Transformer图像分类开源项目模型自监督预训练视觉Transformer
Swin Transformer v2是为图像分类和密集识别任务而设计的视觉Transformer模型。它在ImageNet-1k上进行256x256分辨率的预训练,具有通过局部窗口自注意力机制实现线性计算复杂度的特性。相比前代,Swin Transformer v2加入了残差后范数加余弦注意力以提升训练稳定性、日志距离连续位置偏置以提升低分辨率预训练模型在高分辨率任务中的表现,以及SimMIM自我监督预训练方法以减少对大规模标注图像的依赖。
vit_base_r50_s16_384.orig_in21k_ft_in1k - ResNet-Vision Transformer混合模型用于高精度图像分类
GithubHuggingfaceImageNetResNetVision Transformertimm图像分类开源项目模型
本模型结合ResNet与Vision Transformer优势,在大规模ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,实现高效准确的图像分类。具备9900万参数,支持384x384像素输入,可用于分类任务和特征提取。研究人员可通过timm库轻松应用此模型,进行推理或深入研究。
vit_small_r26_s32_384.augreg_in21k_ft_in1k - ResNet与Vision Transformer结合的图像分类模型解析
GithubHuggingfaceImageNetViTtimm图像分类增广正则化开源项目模型
该模型结合ResNet与Vision Transformer(ViT)的特点,专用于图像分类。最初在ImageNet-21k上训练,后在ImageNet-1k上微调,并在JAX中创建,由Ross Wightman移植到PyTorch环境中。模型采用了36.5M参数和27.7M激活,针对384x384图像进行了优化,通过增强和正则化技术提升了处理复杂图像任务的能力,适用于多种图像识别应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号