Project Icon

wide_resnet101_2.tv_in1k

宽残差网络101_2图像分类与特征提取功能

Wide-ResNet101_2.tv_in1k是一种经ImageNet-1k数据训练的图像分类模型,采用ReLU激活、7x7卷积以及1x1卷积捷径降采样。该模型在图像分类和特征图提取方面表现优秀,可通过timm库轻松集成,是图像处理和计算机视觉领域的实用工具。

wide_resnet101_2.tv_in1k项目介绍

项目概述

wide_resnet101_2.tv_in1k项目是一个用于图像分类的广义残差网络模型。它采用了ReLU激活函数和单层7x7的卷积池化,并利用1x1卷积实现快捷降采样。这一模型是在ImageNet-1K数据集上进行训练,其原始模型权重来自于torchvision。

模型详情

  • 模型类型:图像分类/特征提取骨干
  • 模型统计
    • 参数量:126.9百万
    • GMACs(十亿次加乘):22.8
    • 激活量:21.2百万
    • 图像大小:224 x 224
  • 相关论文
    • 《宽残差网络》:arXiv
    • 《用于图像识别的深度残差学习》:arXiv
  • 参考项目地址GitHub

模型使用

图像分类

该模型可用于图像分类,只需将输入图像调整为合适的尺寸和格式,随后通过模型进行预测,系统可以输出图像属于的类别及其概率。这方面的应用代码如下所示:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('wide_resnet101_2.tv_in1k', pretrained=True)
model = model.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))

特征图提取

该模型还支持特征图提取,通过设置参数使其输出五层的特征图。以下是相关代码示例:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('wide_resnet101_2.tv_in1k', pretrained=True, features_only=True)
model = model.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))

for o in output:
    print(o.shape)

图像嵌入

此外,wide_resnet101_2.tv_in1k模型可用于图像嵌入,通过去除分类器,从而直接输出特征向量:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('wide_resnet101_2.tv_in1k', pretrained=True, num_classes=0)
model = model.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))

模型比较

通过在timm的结果页进行探索,可以发现wide_resnet101_2.tv_in1k与其他模型的对比表现,包括图像大小、参数量、以及在图片分类任务上模型的准确性和效率等方面。这些比较帮助用户选择最合适的模型以满足其需要。

总之,wide_resnet101_2.tv_in1k模型在复杂图像识别任务中表现优异,利用其先进的网络结构可以实现高性能的图像分类、特征提取以及图像嵌入。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号