Project Icon

bert-base-japanese-char-v2

基于日语维基百科的字符级BERT预训练模型

本模型是基于日语维基百科训练的BERT预训练模型,采用字符级分词和全词掩码方法。它保持了原始BERT的12层结构和768维隐藏状态,使用MeCab和Unidic词典处理输入文本,词汇量为6144。训练在Cloud TPU上完成,遵循原始BERT的配置。该模型可广泛应用于日语自然语言处理领域,为研究和开发提供有力支持。

mDeBERTa-v3-base-finetuned-nli-jnli - 基于多语言NLI和JGLUE数据集微调的日语NLP模型
GithubHuggingfacemDeBERTa-v3多语言模型开源项目微调模型自然语言推理零样本分类
该模型基于微软mdeberta-v3-base在多语言NLI和JGLUE数据集上微调而来。它支持日语零样本文本分类和跨语言自然语言推理任务,在评估集上达到68.08%准确率和67.42% F1分数。模型可应用于日语主题分类、跨语言蕴含关系判断等自然语言处理任务,为日语NLP应用提供了有力支持。
clip-japanese-base - 日语CLIP模型,支持图像和文本的零样本分类与检索
BERTCLIPGithubHuggingface图像分类开源项目文本检索模型视觉任务
该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。
bert-base-chinese-ws - BERT基础中文分词模型提升自然语言处理效率
BERTCKIPGithubHuggingfacetransformer模型开源项目模型繁体中文自然语言处理
CKIP实验室开发的BERT基础中文分词模型提供高效的中文文本处理功能,包括分词、词性标注和命名实体识别。该模型支持繁体中文,适用于多种自然语言处理任务。为获得最佳性能,推荐使用BertTokenizerFast作为分词器。该开源项目的详细信息和使用指南可在GitHub上查阅。
wav2vec2-large-xlsr-53-japanese - 基于Wav2Vec2的日语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目日语模型语音识别
该模型是在facebook/wav2vec2-large-xlsr-53基础上,使用日语语音数据集微调而来的语音识别模型。在Common Voice日语测试集上,其词错误率(WER)为81.80%,字符错误率(CER)为20.16%,优于同类模型。它可直接用于日语语音转文本,无需额外语言模型。模型要求输入音频采样率为16kHz。
japanese-gpt2-small - rinna开发的轻量级日语自然语言处理模型
GPT-2GithubHuggingface开源项目文本生成日语模型机器学习模型自然语言处理
japanese-gpt2-small是rinna公司开发的轻量级日语GPT-2模型。该模型基于CC-100和日语维基百科数据集训练,采用12层768隐藏单元的Transformer架构。它使用SentencePiece分词器,适用于文本生成等多种自然语言处理任务。模型在V100 GPU上训练约15天,验证集困惑度达到21左右。作为日语NLP的预训练基础模型,japanese-gpt2-small为相关研究和应用提供了有力支持。
bert-base-arabic - 阿拉伯语BERT基础模型为自然语言处理提供强大支持
BERTGithubHuggingface开源项目机器学习模型自然语言处理阿拉伯语预训练模型
bert-base-arabic是一个在95GB阿拉伯语文本上预训练的BERT基础语言模型。该模型包含OSCAR和维基百科的阿拉伯语数据,支持现代标准阿拉伯语和部分方言。它适用于多种自然语言处理任务,可通过Hugging Face的transformers库轻松调用。这一模型为阿拉伯语NLP研究和应用提供了有力支持,推动了相关领域的发展。
japanese-hubert-base - 日语HuBERT Base自监督语音学习模型
GithubHuBERTHuggingfaceReazonSpeechrinna/japanese-hubert-base开源项目日语语音模型模型自我监督学习
rinna Co., Ltd.发布的日语HuBERT Base模型,采用与原始HuBERT相同的12层变换器结构,通过ReazonSpeech语料库的19000小时语音数据进行训练,支持自监督语音表示学习。模型提供详尽的训练配置和论文参考,便于研究和应用。使用Transformers库可方便地实现日语语音处理。
japanese-gpt-neox-3.6b - 基于GPT-NeoX架构的36亿参数日语大语言模型
GPT-NeoXGithubHuggingface开源项目日语预训练模型深度学习自然语言处理语言模型
japanese-gpt-neox-3.6b是一个基于GPT-NeoX架构的日语大语言模型,拥有36亿参数。该模型在超过3125亿个日语语料库tokens上训练,包括CC-100、C4和维基百科数据。模型采用36层、2816隐藏层的transformer架构,验证困惑度为8.68。使用sentencepiece分词器,词表大小32,000,支持UTF-8字节分解。模型已开源并提供训练数据和使用文档。
japanese-hubert-large - 大规模日语语音表示学习模型HuBERT
GithubHuBERTHuggingfacerinna开源项目日语语音模型模型自监督学习语音识别
rinna公司训练的日语HuBERT Large模型采用24层transformer架构,在19,000小时ReazonSpeech语料库上训练。该模型能够提取1024维日语语音特征表示,为语音识别、合成等任务提供基础。研究人员和开发者可利用此开源模型进行各种日语语音处理应用的开发。模型采用Apache 2.0开源协议,使用方便。可通过Hugging Face transformers库轻松加载使用,支持提取日语语音特征。该项目还提供了fairseq格式的检查点文件,方便研究人员进行深入研究和二次开发。
japanese-stablelm-base-gamma-7b - 日语7B参数语言模型,增强语言建模与任务表现
AI模型GithubHuggingfaceJapanese Stable LMStability AI开源项目模型自然语言处理语言生成
该模型由Stability AI开发,具备7B参数,专注于优化日语语言建模和任务性能,通过Mistral-7B-v0.1的日语持续预训练,获取丰富语言知识。它应用于多个场景并允许微调,数据集丰富包括Wikipedia与mc4。注意,在生产环境中应小心潜在的偏见与限制,但其开放性使其成为多种项目的基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号