Project Icon

bert-base-japanese-char-v3

BERT-base日语字符级预训练模型

bert-base-japanese-char-v3是一个基于BERT架构的日语预训练模型,采用字符级分词和整词掩码策略。模型在CC-100和日语维基百科上训练,具有12层结构和7027词汇量。它使用MeCab和Unidic 2.1.2进行分词,在TPU上训练了200万步,为日语NLP任务提供了有力支持。

deberta-v2-large-japanese-char-wwm - 基于DeBERTa V2的大规模日语预训练语言模型
DeBERTa V2GithubHuggingface字符级tokenization开源项目日语模型自然语言处理预训练模型
deberta-v2-large-japanese-char-wwm是一个基于DeBERTa V2架构的日语预训练语言模型。它采用字符级分词和全词遮蔽技术,在171GB的日语语料库上训练而成。该模型支持掩码语言建模等任务,可直接处理原始文本。经26天训练后,模型在掩码语言建模评估集上达到79.5%的准确率,为日语自然语言处理研究和应用提供了强大工具。
bert-base-japanese-v3-ner-wikipedia-dataset - 基于维基百科数据集的日语命名实体识别BERT模型
BERTGithubHuggingfaceWikipedia数据集固有表現認識大规模语言模型开源项目模型自然语言处理
本项目提供了一个基于BERT的日语命名实体识别模型,该模型使用维基百科数据集进行训练。模型能够识别日语文本中的人名、地名等实体,可通过Transformers库轻松调用。项目源自《大规模语言模型入门》一书,提供了使用示例和相关资源链接,采用Apache 2.0许可证。
line-distilbert-base-japanese - LINE DistilBERT模型推动日语文本智能处理
Apache License 2.0GithubHuggingfaceLINE DistilBERT开源项目日本语模型模型架构预训练模型
LINE Corporation推出的DistilBERT模型专为日语文本处理而设计,基于BERT-base教师模型,在131 GB日语网络文本上完成了预训练。模型采用DistilBERT架构,有6层、768隐层、12个注意力头和66M参数。评估结果优秀,JGLUE评测中表现出色。其使用MeCab和SentencePiece进行分词和子词处理,词汇量为32768。适用于多种日语NLP任务,遵循Apache 2.0许可证。在GitHub上提供更多信息。
bert-base-japanese-v3-unsup-simcse-jawiki - 使用无监督SimCSE的BERT日文模型特性和应用
GithubHuggingfaceSimCSEbert-base-japanese-v3-unsup-simcse-jawikitransformers大规模语言模型开源项目模型语义相似度
本项目利用无监督SimCSE方法对BERT大型语言模型进行微调,重点在于日文数据集的应用。通过cl-tohoku/bert-base-japanese-v3模型和来自jawiki的句子数据集进行训练,旨在提高语言理解与相似度计算的能力。项目附带丰富的使用案例,例如通过Colab笔记本进行的训练与推论,帮助研究者与开发者了解模型的实际应用。这一无监督方法为自然语言处理任务提供了创新方案,尤其适合有特定语言需求的专业项目。
roberta-base-japanese-with-auto-jumanpp - 日语RoBERTa预训练语言模型
GithubHuggingfaceRoBERTa开源项目文本预训练日语模型机器学习模型自然语言处理
RoBERTa日语基础模型通过日本维基百科和CC-100语料库训练而成,采用Juman++分词系统和32000规模词表,支持掩码语言建模与下游任务微调。模型经过A100 GPU集群训练,在JGLUE基准测试中展现出稳定性能,可作为日语自然语言处理的基础模型使用。
japanese-roberta-base - 日语RoBERTa模型适用于掩码语言建模
GithubHuggingfacejapanese-roberta-basetransformers开源项目日语NLP模型模型训练迁移学习
此项目展示了一个经过日本CC-100和维基百科数据集训练的日语RoBERTa模型,专注于掩码语言建模。该模型在12层768隐藏单元的架构中实现了良好的语义预测能力,适合自然语言处理应用,且支持自定义位置编码。
sbert-base-ja - 日语句向量模型:基于BERT的自然语言处理工具
BERTGithubHuggingface句子相似度开源项目日语SNLI数据集日语自然语言处理模型语义表示
sbert-base-ja是一个日语句向量模型,基于BERT架构开发。该模型利用colorfulscoop/bert-base-ja作为预训练基础,并通过日语SNLI数据集进行了微调。它能够将日语文本转化为向量形式,主要应用于句子相似度计算和文本分类等领域。模型采用SentenceTransformer结构,为开发者提供了便捷的API,有助于在多种自然语言处理任务中快速部署和应用。
sentence-bert-base-ja-mean-tokens-v2 - 日语句向量模型SBERT-ja-v2支持高精度语义相似度计算
GithubHuggingfaceSentence-BERT开源项目文本嵌入日本語机器学习模型自然语言处理
sentence-bert-base-ja-mean-tokens-v2是一个基于BERT的日语句向量模型,采用MultipleNegativesRankingLoss训练方法,精度较前版本提升1.5-2个百分点。模型基于cl-tohoku/bert-base-japanese-whole-word-masking预训练,主要用于句子相似度计算等任务。它提供简洁的Python接口,支持批量处理,可应用于多种自然语言处理场景。
bert-base-chinese - BERT预训练模型在中文自然语言处理中的应用
BERTGithubHuggingface中文模型开源项目掩码语言模型模型自然语言处理预训练
bert-base-chinese是一个专为中文自然语言处理设计的预训练BERT模型。该模型采用独立字词片段随机掩码训练方法,适用于掩码语言建模等任务。由HuggingFace团队开发,拥有12层隐藏层和21128词汇量。虽然可能存在潜在偏见,但为中文NLP应用提供了有力支持。研究人员可通过简洁的Python代码快速应用此模型。
sentence-bert-base-ja-mean-tokens - 日语Sentence-BERT模型实现句子向量化和相似度计算
BERTGithubHuggingface句向量模型开源项目日语模型特征提取语义相似度
sentence-bert-base-ja-mean-tokens是一个专为日语开发的Sentence-BERT模型,可将日语句子转换为向量表示。该模型适用于句子相似度计算、文本分类等NLP任务,提供Python接口,支持批量处理和GPU加速。作为日语自然语言处理的基础工具,它为开发者提供了高效的句子编码解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号