Project Icon

bert-base-japanese-char

日语BERT模型采用字符级分词预训练

bert-base-japanese-char是一个基于日语维基百科训练的BERT模型,采用字符级分词。模型架构包括12层、768维隐藏状态和12个注意力头,词汇量4000。处理流程先用MeCab进行形态分析,再进行字符级分词。模型在约1700万个句子上训练100万步,每批次处理256个实例,每个实例包含512个标记。该模型适用于各种日语自然语言处理任务。

bert-base-japanese-char-v2 - 基于日语维基百科的字符级BERT预训练模型
BERTGithubHuggingface开源项目日语模型机器学习模型维基百科数据集自然语言处理
本模型是基于日语维基百科训练的BERT预训练模型,采用字符级分词和全词掩码方法。它保持了原始BERT的12层结构和768维隐藏状态,使用MeCab和Unidic词典处理输入文本,词汇量为6144。训练在Cloud TPU上完成,遵循原始BERT的配置。该模型可广泛应用于日语自然语言处理领域,为研究和开发提供有力支持。
bert-base-japanese-char-v3 - BERT-base日语字符级预训练模型
BERTGithubHuggingface全词掩码字符级分词开源项目日语预训练模型模型自然语言处理
bert-base-japanese-char-v3是一个基于BERT架构的日语预训练模型,采用字符级分词和整词掩码策略。模型在CC-100和日语维基百科上训练,具有12层结构和7027词汇量。它使用MeCab和Unidic 2.1.2进行分词,在TPU上训练了200万步,为日语NLP任务提供了有力支持。
bert-base-japanese - 预训练于日语维基百科的BERT模型 结合IPA词典和WordPiece分词
BERTGithubHuggingface开源项目日语模型机器学习模型维基百科自然语言处理
该项目提供了一个基于日语维基百科预训练的BERT模型。模型采用IPA词典进行词级分词,并结合WordPiece算法进行子词处理。它保持了原始BERT base的架构设计,在2019年9月的日语维基百科数据上进行训练。模型使用MeCab配合IPA词典进行形态分析,词汇量达32000。遵循原始BERT的训练参数,该模型可广泛应用于日语自然语言处理领域。
bert-base-japanese-v2 - 日语BERT预训练模型:全词屏蔽和Unidic分词
BERTGithubHuggingface全词掩码分词开源项目日语预训练模型模型维基百科
bert-base-japanese-v2是基于日语维基百科预训练的BERT模型,采用unidic-lite词典和全词屏蔽策略。模型架构包含12层、768维隐藏状态和12个注意力头。它结合MeCab和WordPiece算法进行分词,词表大小为32768。模型在512个token实例上进行了100万步训练,耗时约5天。该模型适用于多种日语自然语言处理任务,为研究人员和开发者提供了强大的日语语言理解工具。
bert-base-japanese-v3 - 日语BERT预训练模型:全词掩码和大规模语料库训练
BERTGithubHuggingface开源项目日语预训练模型机器学习模型自然语言处理词级别分词
bert-base-japanese-v3是基于BERT架构的日语预训练模型,采用Unidic 2.1.2词典分词和全词掩码技术。该模型在CC-100和日语维基百科语料上训练,拥有12层结构和768维隐藏状态。模型适用于各种日语自然语言处理任务,为研究和开发提供了强大支持。
bert-base-japanese-whole-word-masking - 基于日语维基百科的BERT预训练模型 采用全词掩码技术
BERTGithubHuggingface全词掩码开源项目日语预训练模型模型维基百科语料自然语言处理
该BERT模型基于日语维基百科数据预训练,采用IPA词典和MeCab进行分词,并引入全词掩码技术。模型架构与BERT base一致,包含12层结构、768维隐藏状态和12个注意力头。训练语料来自2019年9月的日语维基百科,词表规模为32000。模型在Cloud TPUs上训练完成,遵循原始BERT的训练配置,并以CC BY-SA 3.0许可证发布。
bert-base-japanese-upos - 日语自然语言处理的BERT模型应用
BERTGithubHuggingfacePOS标注Universal Dependencies依存解析开源项目日语模型
此模型在日语维基百科文本上进行预训练,支持词性标注和依存解析等任务。它衍生自bert-base-japanese-char-extended,利用UPOS体系为短单位词标注。通过Python代码,用户能方便地进行文本处理和结构解析,适合希望高效处理日语文本的用户。该模型具有良好的兼容性,可通过Huggingface平台使用。
deberta-v2-base-japanese-char-wwm - 日语DeBERTa V2模型实现字符级遮蔽与预训练
DeBERTa V2GithubHuggingfacetransformers字符级别开源项目日本語模型自然语言处理
该项目介绍了日语DeBERTa V2 base模型,该模型在日语Wikipedia、CC-100和OSCAR数据集上进行字符级分词和整体词遮蔽的预训练,可用于掩码语言建模及下游任务微调,采用了22,012个字符级子词的sentencepiece分词模型,通过transformers库进行训练。
bert-large-japanese-v2 - 更高效的日语文本处理BERT模型
BERTGithubHuggingface云TPU开源项目整个单词遮盖日本语模型词级标记
结合Unidic 2.1.2词典和WordPiece算法进行词汇标记的BERT模型,通过在CC-100和Jawiki语料库上的训练,提升日语文本处理的效率,适用于多种自然语言处理任务。
deberta-v2-base-japanese - 日语DeBERTa V2 base模型:为自然语言处理提供强大基础
DeBERTa V2GithubHuggingface开源项目日语机器学习模型自然语言处理预训练模型
DeBERTa V2 base日语模型基于维基百科、CC-100和OSCAR数据集预训练而成。该模型在情感分析、语义相似度和问答等多项自然语言理解任务中表现优异。模型采用Juman++分词技术,并使用sentencepiece构建32000个子词词表。预训练过程耗时3周,使用8块NVIDIA A100 GPU。在JGLUE基准测试中,模型在MARC-ja、JSTS、JNLI、JSQuAD和JComQA等任务上均取得了与现有最佳模型相当或更好的结果,突显了其在各种日语自然语言理解任务中的广泛适用性和高效性。这一模型为日语自然语言处理研究和应用提供了坚实基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号