Project Icon

bert-base-japanese-v2

日语BERT预训练模型:全词屏蔽和Unidic分词

bert-base-japanese-v2是基于日语维基百科预训练的BERT模型,采用unidic-lite词典和全词屏蔽策略。模型架构包含12层、768维隐藏状态和12个注意力头。它结合MeCab和WordPiece算法进行分词,词表大小为32768。模型在512个token实例上进行了100万步训练,耗时约5天。该模型适用于多种日语自然语言处理任务,为研究人员和开发者提供了强大的日语语言理解工具。

chinese-bert-wwm-ext - 全词掩码中文BERT模型加速自然语言处理
BERTGithubHuggingface中文处理全词掩码开源项目模型自然语言处理预训练模型
chinese-bert-wwm-ext是一个开源的全词掩码中文BERT预训练模型,致力于提高中文自然语言处理效率。该模型由哈工大讯飞联合实验室开发,通过全词掩码技术增强了对中文语境的理解。项目开放了预训练模型和相关资源,可应用于文本分类、情感分析、问答系统等多种中文NLP任务。研究人员可基于此模型进行定制化微调,以满足特定领域的应用需求。
albert-base-v2 - ALBERT基础模型v2实现高效自然语言处理
ALBERTGithubHuggingfaceTransformer开源项目模型深度学习自然语言处理预训练模型
albert-base-v2是ALBERT架构的预训练语言模型,采用掩码语言建模和句子顺序预测训练。模型包含12个重复层、128维嵌入、768维隐藏层和12个注意力头,参数总量为11M。通过共享层权重,实现了较小的内存占用。相比v1版本,v2在多数下游自然语言处理任务中表现更优,适用于各类NLP应用场景。
bert-base-german-uncased - 基于多源语料库训练的德语BERT预训练模型
BERTGithubHuggingface开源项目德语模型数据预处理模型深度学习自然语言处理
巴伐利亚州立图书馆MDZ团队开发的德语BERT模型,基于维基百科、EU图书和开放字幕等数据集训练,数据规模达16GB、23亿tokens。模型提供大小写敏感和不敏感两个版本,原生支持Transformers库,预训练序列长度512。经实测在命名实体识别、词性标注等任务中表现优异,可广泛应用于德语NLP领域。
japanese-cloob-vit-b-16 - 基于CLOOB的日语图像文本融合模型
CLOOBGithubHuggingfacerinna人工智能开源项目模型自然语言处理计算机视觉
这是一个专为日语开发的CLOOB(对比离一升压)模型,用于图像和文本的融合处理。模型采用ViT-B/16架构作为图像编码器,12层BERT作为文本编码器,并在CC12M数据集上进行训练。该模型提供了简单的使用方法和实现示例,可应用于图像识别和自然语言处理任务。模型在Apache 2.0许可下发布,允许用于研究和商业用途。
nomic-bert-2048 - 预训练BERT模型实现2048序列长度的上下文理解
BERTGithubHuggingfacenomic-bert-2048开源项目机器学习模型自然语言处理预训练模型
nomic-bert-2048模型通过Wikipedia和BookCorpus数据集训练,采用改进的位置编码技术,支持2048长度的文本序列处理。在GLUE基准评测中展现出与传统BERT相当的性能,同时具备更强的长文本理解能力。该模型兼容标准BERT分词系统,适用于文本补全和分类等自然语言处理任务。
transformers-ud-japanese-electra-base-ginza-510 - 基于ELECTRA的日语自然语言处理模型
ELECTRAGithubHuggingfaceMIT许可证句法结构开源项目数据集模型
项目基于ELECTRA模型与spaCy v3,预训练与微调来源于mC4数据集的2亿句日语文本,通过UD_Japanese_BCCWJ r2.8增强。Python包ja_ginza_electra通过识别日语短语结构提升自然语言处理能力,遵循MIT许可证,适合开发者和研究人员使用。
bert-base-arabertv02 - AraBERT:用于阿拉伯语理解的高性能预训练模型
AraBERTBERTGithubHuggingface开源项目模型自然语言处理阿拉伯语预训练语言模型
AraBERT是一系列基于BERT架构的阿拉伯语预训练语言模型。其中bert-base-arabertv02版本使用了77GB的大规模语料库进行训练,包含200M句子和8.6B词。这些模型在情感分析、命名实体识别和问答等多项任务中表现出色。AraBERT提供多个版本,包括base和large尺寸,以及预分割和未分割文本的变体,以满足不同应用需求。模型的优化和多样化为阿拉伯语自然语言处理研究和应用提供了有力支持。
shisa-gamma-7b-v1 - 英日双语优化的Japanese Stable LM语言模型
GithubHuggingfaceShisa-gamma-7b人工智能开源项目日语模型机器学习模型语言模型
shisa-gamma-7b-v1是基于Japanese Stable LM Base Gamma 7B的微调模型,经过数据集优化后在JA MT-Bench测试中取得了显著成果。该模型支持日语和英语双语处理,采用Apache-2.0许可证,适用于需要日英语言处理能力的开发场景。
bert-base-NER-uncased - BERT基础模型应用于命名实体识别的开源项目
GithubHuggingfaceMIT许可证免责条款开源许可开源项目模型版权声明软件分发
该项目基于BERT的bert-base-uncased模型,通过微调实现了命名实体识别(NER)功能。模型能有效识别文本中的实体,支持多种语言和实体类别,包括人名、地名、组织机构等。在多个NER数据集上展现了优异性能,模型参数规模约1.1亿。项目为自然语言处理研究人员和开发者提供了一个强大的工具,可用于提取各类文本中的关键实体信息,适用于信息抽取、问答系统等多种应用场景。
bert_uncased_L-2_H-512_A-8 - 小型BERT模型在资源受限环境中的表现及应用策略
BERTGLUEGithubHuggingface开源项目模型模型训练知识蒸馏计算资源
24款小型BERT模型在低计算资源环境中通过知识蒸馏实现有效性能,支持与BERT-Base和BERT-Large相同的微调模式。这些模型为中小型机构的研究提供了创新支持,尤其是在GLUE测试中通过优化批大小和学习率等微调参数。这些模型为探索非传统扩容的创新应用提供了可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号