Project Icon

gpt2-chinese-cluecorpussmall

中文GPT2预训练模型与多模态扩展简介

项目涵盖了使用UER-py和TencentPretrain的中文GPT2模型的预训练过程,从GPT2-distil到GPT2-xlarge的多个版本。借助CLUECorpusSmall数据集,这些模型有效支持中文文本生成,并扩展至多模态预训练。模型可通过UER-py Modelzoo或HuggingFace下载,用于实际文本生成应用。

项目介绍:gpt2-chinese-cluecorpussmall

项目描述

gpt2-chinese-cluecorpussmall 是一系列用于生成中文文本的GPT2模型。这些模型中除了GPT2-xlarge之外,都是通过 UER-py 进行预训练的,相关介绍可以参考这篇论文。而GPT2-xlarge模型则通过 TencentPretrain 进行预训练,相关介绍详见这篇论文。这个框架继承了UER-py的功能,并将其扩展到支持超过十亿参数的多模态预训练框架。其他模型同样可以使用TencentPretrain进行预训练。

这些中国版GPT2模型可供下载,用户可以从 UER-py Modelzoo页面 或通过HuggingFace平台获取。模型详情如下:

链接
GPT2-distil[L=6/H=768][distil]
GPT2[L=12/H=768][base]
GPT2-medium[L=24/H=1024][medium]
GPT2-large[L=36/H=1280][large]
GPT2-xlarge[L=48/H=1600][xlarge]

需要注意的是,6层的模型称为GPT2-distil模型,因为它遵循 distilgpt2 的配置,并且在预训练过程中不涉及较大模型的监督。

模型使用方法

用户可以直接通过文本生成管道来使用该模型(以下为GPT2-distil的示例):

>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> text_generator = TextGenerationPipeline(model, tokenizer)   
>>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True)
    [{'generated_text': '这是很久之前的事情了 。 我 现 在 想 起 来 就 让 自 己 很 伤 心 , 很 失 望 。 我 现 在 想 到 , 我 觉 得 大 多 数 人 的 生 活 比 我 的 生 命 还 要 重 要 , 对 一 些 事 情 的 看 法 , 对 一 些 人 的 看 法 , 都 是 在 发 泄 。 但 是 , 我 们 的 生 活 是 需 要 一 个 信 用 体 系 的 。 我 不 知'}]

训练数据

训练使用的数据集为 CLUECorpusSmall

训练流程

GPT2-xlarge模型由腾讯的TencentPretrain 进行预训练,其余模型则通过UER-py进行预训练,云平台使用的是腾讯云。训练包括多个阶段:

阶段一

  • 使用128的序列长度进行1,000,000步的预训练。
  • 使用如下命令进行预处理和预训练:
# 数据预处理
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
                      --seq_length 128 --processes_num 32 --data_processor lm 
# 预训练
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --config_path models/gpt2/distil_config.json \
                    --output_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 1e-4 --batch_size 64

阶段二

  • 将训练步骤增加250,000步,序列长度变为1024。
  • 再次进行数据预处理与预训练:
# 数据预处理
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
                      --seq_length 1024 --processes_num 32 --data_processor lm 
# 预训练
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --pretrained_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin-1000000 \
                    --config_path models/gpt2/distil_config.json \
                    --output_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
                    --learning_rate 5e-5 --batch_size 16

最后,将预训练模型转换为Huggingface格式:

python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin-250000 \
                                                        --output_model_path pytorch_model.bin \
                                                        --layers_num 6

对于GPT2-xlarge模型,类似地使用TencentPretrain进行预训练,并使用DeepSpeed进行优化。

引用与参考文献

如果您在研究中使用了此项目,请引用相关的参考文献:

@article{radford2019language,
  title={Language Models are Unsupervised Multitask Learners},
  author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
  year={2019}
}

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}

@article{zhao2023tencentpretrain,
  title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
  author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
  journal={ACL 2023},
  pages={217},
  year={2023}
}

通过这些复杂的预训练和优化步骤,gpt2-chinese-cluecorpussmall项目提供了多种中文文本生成模型,帮助用户轻松生成流畅且自然的中文文本。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号