Project Icon

yolov5

视觉AI对象检测和图像分类技术

YOLOv5,一款由Ultralytics开源的视觉AI模型,支持对象检测、图像分割与分类。提供全面文档及社区支持,适合各级用户使用,并定期更新以集成最新技术。

RT-DETR - 超越YOLO的实时目标检测算法领域突破
CVPR 2024GithubRT-DETR实时目标检测开源项目深度学习物体识别
RT-DETR是一个开源的实时目标检测算法项目,在性能上超越了YOLO系列。它提供多种模型变体,从轻量级R18到大型X模型,适应不同应用需求。在COCO和Objects365数据集上,RT-DETR展现出卓越性能,最高达到56.2mAP和217FPS。项目同时支持PyTorch和PaddlePaddle框架,便于研究和应用。
yolos-small-finetuned-license-plate-detection - 车牌识别微调模型提升物体检测能力
GithubHuggingfaceYOLOS开源项目模型模型微调目标检测视觉Transformer车牌识别
YOLOS小型模型经过微调适用于车牌检测,使用5200张图片进行训练,并在380张图片上验证,实现49.0的平均精度。模型支持PyTorch平台,并通过Python代码执行对象检测与边界框预测。其此前版本曾在ImageNet-1k和COCO 2017数据集上进行训练,具备卓越的识别性能。
multi-object-tracker - 利用Python实现多对象跟踪,兼容多种检测器
CentroidTrackerGithubOpenCVTF-MobileNetSSDYOLOv3multi-object tracker开源项目
该项目提供多种基于Python的多对象跟踪算法,包括CentroidTracker、IOUTracker、CentroidKF_Tracker和SORT,支持TF_SSDMobileNetV2、Caffe_SSDMobileNet和YOLOv3等OpenCV对象检测器。安装简便,使用友好,支持GPU加速,适用于视频数据解析和对象追踪。参考项目示例可快速上手,实现精准多对象跟踪。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
Labelme2YOLO - LabelMe标注转YOLO格式数据集转换工具
GithubLabelme2YOLO开源项目数据转换数据集处理机器学习目标检测
Labelme2YOLO是一个开源工具,用于将LabelMe标注工具的JSON格式转换为YOLO文本文件格式。它支持批量转换和单文件转换,能自动分割训练验证集,并可生成YOLOv5 v7.0实例分割数据集。通过简单的命令行操作,用户可获得YOLO格式的标签、图像文件和dataset.yaml配置。这个工具简化了数据集准备过程,方便了YOLO目标检测和实例分割任务的开展。
JSON2YOLO - COCO到YOLO格式转换工具 提升目标检测效率
COCO2YOLOGithubUltralytics开源项目数据集转换机器学习目标检测
JSON2YOLO是一个开源数据集转换工具,专注于将COCO格式JSON数据转换为YOLO格式。这款跨平台工具支持Linux、MacOS和Windows,为机器学习实践者简化了数据处理流程。它不仅优化了数据转换过程,还能提升目标检测模型的训练效率。项目源码可在GitHub获取,用户也可加入Discord社区交流。
EasyCV - 基于PyTorch的全能计算机视觉工具箱,支持自监督学习和Transformer模型
EasyCVGithubPyTorch图像分类开源项目目标检测自监督学习
EasyCV是基于PyTorch的全能计算机视觉工具箱,专注于自监督学习、Transformer模型和主要视觉任务,包括图像分类、度量学习、目标检测和姿态估计。该工具箱提供了最先进的自监督算法如SimCLR、MoCO V2、Swav、DINO和基于掩码图像建模的MAE。它拥有简单综合的推理接口,并支持多种预训练模型。EasyCV支持多GPU和多工作者训练,利用DALI优化数据处理,使用TorchAccelerator和fp16加速训练,并通过PAI-Blade优化推理性能。
trt_yolo_video_pipeline - 基于TensorRT的多路视频分析处理框架
GithubTensorRT多路并发开源项目目标检测硬件编解码视频分析
TRT-VideoPipeline是一个基于TensorRT的多路视频分析处理框架。该项目支持YOLO系列模型推理,实现单模型多显卡多实例负载调度,并利用GPU进行数据处理。框架支持NVIDIA硬件编解码,可处理RTSP、RTMP、MP4等多种视频格式。其模块化设计便于功能节点的灵活组合,适应不同应用场景。
opencv_zoo - OpenCV深度学习模型库及多平台性能评测
GithubOpenCV人工智能应用开源项目模型性能基准深度学习模型计算机视觉
opencv_zoo是一个针对OpenCV DNN优化的深度学习模型库,涵盖人脸检测、目标跟踪、图像分割等多种计算机视觉任务。该项目提供各类预训练模型,并包含多平台性能基准测试结果,便于开发者选择合适模型。此外,项目还提供详细的安装指南和使用示例,有助于快速集成和应用。
sahi - 支持小物体检测和大图像推理的轻量级视觉工具库
GithubSAHIyolov5实例分割对象检测开源项目计算机视觉
SAHI是一款轻量级视觉工具库,专注于解决小物体检测和大图像推理难题,支持多种框架如YOLOv5、MMDetection和Detectron2。提供丰富的命令行工具及COCO数据集处理功能,适用于精细化的计算机视觉应用,特别在复杂图像处理中表现优异。通过多种教程和示例,帮助开发者快速上手并优化视觉任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号