Project Icon

detoxify

基于Pytorch Lightning和Transformers的多语言有害评论分类模型

Detoxify项目利用Pytorch Lightning和Transformers构建模型,识别和分类包含威胁、辱骂和身份攻击的有害评论。这些模型支持多语言操作,致力于减少无意中的偏见。项目在多次Jigsaw挑战赛中表现出色,提供高效的有害内容检测方案,适合用于研究和内容审核工作,帮助更快速地标记有害内容和提高用户体验。

toxic-bert - 基于深度学习的多语言有毒评论检测工具
DetoxifyGithubHuggingface内容审核开源项目机器学习模型毒性评论分类自然语言处理
Detoxify是一个开源的深度学习工具,专门用于识别和分类有毒评论。该项目基于PyTorch Lightning和Transformers框架,提供三个预训练模型,分别针对一般有毒评论、含偏见的有毒评论和多语言有毒评论。Detoxify能够检测威胁、淫秽、侮辱等多种有毒内容,支持英语、法语等7种语言。这个工具易于使用,适合研究人员或内容审核人员使用,但在应用时需要注意潜在的偏见问题。
unbiased-toxic-roberta - RoBERTa模型识别多语言有毒评论并减少偏见
DetoxifyGithubHuggingface开源项目有毒评论分类机器学习模型模型评估自然语言处理
该项目开发了基于RoBERTa的多语言模型,用于检测互联网上的有毒评论。模型在Jigsaw三个挑战数据集上训练,可识别威胁、侮辱和仇恨言论等多种有毒内容。它支持多种语言,易于使用,适用于研究和内容审核。项目还探讨了模型的局限性和伦理问题,努力减少对特定群体的意外偏见。
toxic-comment-model - DistilBERT微调的高性能在线评论毒性分类模型
DistilBERTGithubHuggingface开源项目文本分类有毒评论机器学习模型自然语言处理
该模型是基于DistilBERT微调的在线评论毒性分类器,在测试集上达到94%准确率和0.59 F1分数。它易于使用,适合处理各类在线评论,但在某些身份群体相关评论上可能存在偏见。模型使用Kaggle竞赛数据集训练,用户在应用时应注意其在特定群体评论分类上的局限性。
toxic-comment-model - 使用DistilBERT进行在线毒性评论分类的模型与偏见分析
DistilBERTGithubHuggingface偏差培训数据开源项目模型毒性评论
该模型基于DistilBERT进行精调,专为在线毒性评论分类设计。尽管总体表现出色,但在识别某些身份群体时表现出偏见,如穆斯林和犹太人。通过示例代码能快速应用此模型,其在10000条测试数据中取得94%的准确率,但f1-score为0.59。更多信息及训练代码可在指定GitHub仓库获取。
roberta_toxicity_classifier - RoBERTa模型提供准确的有害评论分类功能
GithubHuggingfaceJigsawRoBERTa平行语料库开源项目有毒评论分类模型自然语言处理
本项目基于RoBERTa开发了一个有害评论分类模型。该模型在约200万条Jigsaw数据集样本上进行微调,测试集表现优异,AUC-ROC达0.98,F1分数为0.76。模型易于集成到Python项目中,可用于文本有害内容检测。项目提供使用说明和引用信息,便于研究人员和开发者在此领域深入探索。
roberta_toxicity_classifier - 高效的毒性评论分类模型
AUC-ROCF1-scoreGithubHuggingfaceJigsawRoBERTa开源项目模型毒性分类
该模型专注于毒性评论的分类,使用来自Jigsaw 2018、2019和2020年的数据集训练,包含约200万个英文例子。通过对RoBERTa模型的精细调校,在测试集上表现出色,AUC-ROC达到0.98,F1评分为0.76,是用于识别毒性内容的有效工具。
ToxicityModel - 基于RoBERTa的毒性检测与评分优化工具
AI辅助GithubHuggingfaceToxicityModeltransformers开源项目模型毒性识别词汇评级
这是一款基于RoBERTa的微调模型,用于有效检测和评分文本毒性。模型通过有毒及无毒语言示例训练,特别在wiki_toxic和toxic_conversations_50k数据集上表现出色。作为RLHF训练的辅助工具,该模型的输出值可用于判断文本的毒性与否,适合多种需检测有毒语言的应用场景。
bert-toxic-comment-classification - BERT模型在毒性评论分类中的应用与实现
BERTGithubHuggingface开源项目文本分类机器学习模型模型训练毒性评论分类
该项目基于BERT模型,通过fine-tuning实现毒性评论的智能分类。模型在1500行测试数据上达到0.95 AUC,采用Kaggle竞赛数据集训练。项目提供简洁的Python接口,便于开发者快速集成文本毒性检测功能。适用于构建在线社区、内容平台的评论审核系统。
voice-safety-classifier - 语音聊天毒性检测的高精度分类工具
GithubHuggingfacetoxicity detection多标签分类开源项目模型模型评估语音安全音频分类
该项目提供了一个新的语音聊天毒性检测基准模型,基于大规模数据集开发。模型使用WavLM base plus权重,经过2,374小时语音多标签微调,输出标签包括Profanity、DatingAndSexting、Racist、Bullying等。评估显示模型在二元分类任务中的精度达到94.48%。使用者可通过特定命令运行模型权重进行应用。
russian_toxicity_classifier - 基于BERT的俄语有毒评论识别模型
BERTGithubHuggingface俄语开源项目文本分类模型毒性评论检测自然语言处理
russian_toxicity_classifier是一个基于BERT的俄语有毒评论分类模型,通过微调Conversational RuBERT训练而成。该模型使用2ch.hk和ok.ru的合并数据集,在测试集上实现97%的准确率。它可轻松集成到Python项目中,用于识别和分类俄语文本的毒性。这一开源工具为研究人员和开发者提供了有效应对在线交流中有毒内容的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号