Project Icon

Phi-3-mini-4k-instruct

高效节省内存的模型微调策略,快速实现量化优化

此项目通过Unsloth量化技术,提供高效的Mistral平台大模型微调方案,速度提升至2-5倍,内存占用降低至50-70%。提供的Colab笔记本支持Phi-3、Llama 3、Gemma 2等多种模型,简单易用,适合初学者。用户可以节省计算资源,并将微调后的模型导出至GGUF或上传至Hugging Face,方便成果共享。

Phi-3-mini-4k-instruct-bnb-4bit - 通过Unsloth工具提升深度学习模型微调速度与内存效率
GithubGoogle ColabHuggingfaceUnslothtransformers开源项目机器学习模型模型微调
项目通过提供免费、易于使用的Google Colab笔记本,便于在微调Phi-3.5、Llama 3.1、Mistral等深度学习模型时实现更高效的速度与内存管理,内存使用减少达74%。用户只需添加数据集并执行所有代码,便可获得加速至最高3.9倍的微调模型,支持导出多种格式或上传至Hugging Face平台。Colab快捷方式有效简化模型微调过程,适用于文本生成和对话模板。
Phi-3.1-mini-128k-instruct-GGUF - 量化指导优化内存资源使用
GithubHuggingfacePhi-3-mini-128k-instruct下载文件开源项目模型模型选择量化高质量
项目利用llama.cpp和imatrix技术对模型进行量化,提供适合不同内存需求的文件。用户可通过huggingface-cli根据硬件选择量化格式,实现速度与质量平衡。同时,项目提供特性图表以指引用户选择‘I-quant’或‘K-quant’方法,满足不同硬件环境性能要求。
mistral-7b-bnb-4bit - 更高效的模型微调与内存优化技术
GithubHuggingfaceMistral 7bUnsloth内存优化开源项目快速微调模型量化模型
Unsloth技术助力Mistral 7b在内存减少70%的同时实现5倍微调速度提升。项目提供多个适合初学者的Google Colab笔记,只需添加数据集并运行,便可生成更快的微调模型,支持导出到GGUF、vLLM或上传Hugging Face。此方案有效优化了Gemma 7b、Mistral 7b、Llama-2 7b等模型的性能和内存使用,提升模型微调效率。
Phi-3.1-mini-4k-instruct-GGUF - Phi-3.1-mini-4k-instruct量化技术在文本生成中的应用
GithubHuggingfaceNLPPhi-3.1-mini-4k-instruct开源项目数据集文件下载模型量化
该项目通过llama.cpp进行模型量化,提供多种量化文件选项,涵盖从高质量到适合低内存设备的多种场景。项目详细介绍了如何选择量化文件,并提供了在不同硬件环境下的最佳实践,对于有技术需求的用户,项目提供了功能特性对比分析,帮助理解量化与优化策略。
Mistral-Small-Instruct-2409-bnb-4bit - 优化模型效率,降低内存消耗,实现免费微调
GithubHuggingfaceMistralUnsloth开源项目性能提升模型模型微调记忆节省
Mistral-Small-Instruct-2409利用Unsloth技术实现了快速微调,与传统方法相比,显著降低约70%的内存使用,提高2到5倍的效率。该项目提供易于上手的Google Colab免费笔记本,支持多种导出格式包括GGUF和vLLM,同时提供详尽的安装和使用指南。Mistral-Small-Instruct-2409还支持函数调用和简易命令行交互,适合需高效生产推理的用户。
Qwen2-7B-Instruct-bnb-4bit - 通过Unsloth实现Mistral与Gemma的高效内存优化与快速微调
GithubGoogle ColabHuggingfaceUnsloth内存优化学习笔记本开源项目模型模型微调
Unsloth工具支持Mistral、Gemma、Llama等模型在Google Colab上实现最高5倍的微调速度,同时将内存使用减少至原来70%以下。只需上传数据集并选择“运行所有”,即可获得优化后的模型,支持导出到GGUF、vLLM,或者上传至Hugging Face。这一方案提升了复杂模型的训练效率,并为开发人员提供了便捷的实验平台。多个开源笔记本和适用广泛的Colab文件降低技术门槛,非常适合初学者使用,即便是参数量大的CodeLlama模型也能受益。
mistral-7b-instruct-v0.2-bnb-4bit - 使用Unsloth技术优化模型微调,显著提升性能并减少内存占用
GithubHuggingfaceMistralUnsloth开源项目性能优化数据集机器学习模型
该项目介绍了一种运用Unsloth技术的模型微调方法,使Mistral、Gemma、Llama等模型实现2-5倍的速度提升,并减少70%的内存使用。用户可通过在Google Colab或Kaggle运行免费笔记本,轻松获得经过优化的模型。工具初学者友好,支持多种微调和导出格式,如GGUF、vLLM,及上传至Hugging Face,满足不同用户的需求。
Phi-3.5-mini-instruct-GGUF - 高性能微软小型语言模型的量化方案
ARM芯片GGUFGithubHuggingfacePhi-3.5-mini-instruct开源项目模型模型权重量化
该项目基于llama.cpp框架,对Microsoft Phi-3.5-mini-instruct模型进行GGUF格式量化,提供从Q2到Q8等多个精度版本。每个量化版本都针对不同硬件平台进行了优化,包括针对ARM芯片的特殊优化版本。项目提供完整的模型特性对比和选择指南,帮助开发者根据实际需求选择合适的量化版本。
Mistral-Nemo-Instruct-2407 - 快速高效的模型微调工具,降低内存消耗
GithubGoogle ColabHuggingfaceMistralUnsloth开源项目微调性能优化模型
利用Unsloth技术,在简化操作的同时,在Google Colab环境下实现模型微调,速度提升至5倍,内存使用降低70%。界面设计便于数据集上传和模型优化,并支持导出为GGUF、vLLM格式或上传至Hugging Face。兼容多种模型如Llama、Gemma、Mistral等,即便大型模型也可显著加快微调过程。
Phi-3.5-mini-instruct - Unsloth加速技术让开源语言模型训练更高效
GithubHuggingfacePhi-3.5Unsloth多语言开源项目微调模型长上下文
Phi-3.5-mini-instruct是微软AI团队开发的开源语言模型,具备多语言理解、长文本处理和代码生成能力,支持128K上下文长度。结合Unsloth优化技术,模型训练速度提升2倍,内存占用降低50%。适合在资源受限环境下部署的AI应用开发,并提供Google Colab环境供快速测试验证。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号