Project Icon

gliner_multi

灵活识别多语言实体的开源NER模型

GLiNER-multi是一个基于双向Transformer架构的开源多语言命名实体识别模型。它能够灵活识别各种实体类型,填补了传统NER模型与大型语言模型之间的空白。该模型在Pile-NER数据集上训练,支持多语言处理,易于集成到不同的自然语言处理应用中。GLiNER-multi在保证性能的同时优化了模型规模,适用于计算资源有限的场景。

glm-4-9b - 开源预训练模型GLM-4-9B实现多语言及多任务处理能力
GLM-4-9BGithubHuggingface多语言支持开源模型开源项目模型自然语言处理预训练模型
作为GLM-4系列的开源版本,GLM-4-9B在语义理解、数学计算、逻辑推理等方面展现出优秀性能。模型支持26种语言处理、多轮对话、代码执行及工具调用功能,具备128K上下文处理能力。其扩展版本包括支持1M上下文的Chat版本和支持视觉任务的GLM-4V-9B多模态模型。
roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
nb-bert-base-ner - 挪威语BERT命名实体识别模型 适用NorNE数据集
BERTGithubHuggingfaceNorNE命名实体识别开源项目挪威语模型自然语言处理
nb-bert-base-ner是一个基于BERT的挪威语命名实体识别模型,通过NorNE数据集微调而成。此模型能够识别挪威语文本中的人名、地名等命名实体。开发者可借助Hugging Face的transformers库轻松集成和使用,项目还提供了简洁的示例代码,便于快速实现挪威语命名实体识别功能。
Multilingual-MiniLM-L12-H384 - 紧凑高效的多语言预训练模型助力跨语言自然语言处理
GithubHuggingfaceMiniLM多语言模型开源项目模型模型压缩自然语言处理跨语言任务
Multilingual-MiniLM-L12-H384是一款小型多语言预训练模型,采用12层结构和384维隐藏单元,transformer参数仅2100万。该模型在XNLI和MLQA等跨语言任务中表现出色,支持15种语言,同时保持了较小的模型规模。它融合了BERT的架构设计和XLM-R的分词技术,适用于各类需要高效多语言处理的应用场景。
hunflair2-ner - 基于Flair的生物医学实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目文本分析模型自然语言处理
HunFlair2-NER是一个面向生物医学领域的命名实体识别模型,基于Flair框架开发。模型可识别文本中的生物医学实体,包括基因、疾病和化合物等。基于PrefixedSequenceTagger架构,集成SciSpacy分词功能,适用于生物医学文献分析、临床报告处理等场景。支持Python环境快速部署集成。
ner-english-fast - 高效识别英语文本中的人名、地点和组织实体
FlairGithubHuggingfaceLSTM-CRF命名实体识别开源项目机器学习模型自然语言处理
ner-english-fast是基于Flair框架的命名实体识别模型,可识别英语文本中的人名、地点、组织和其他实体。该模型在CoNLL-03数据集上的F1分数为92.92,采用Flair嵌入和LSTM-CRF架构。它易于集成到NLP应用中,适用于文本分析和信息提取任务。模型支持快速部署,可通过简单的Python代码调用。
KoELECTRA-small-v3-modu-ner - 基于KoELECTRA的韩语命名实体识别模型
GithubHuggingfaceKoELECTRA开体名识别开源项目机器学习模型自然语言处理韩语
KoELECTRA-small-v3-modu-ner是一个韩语命名实体识别模型,基于koelectra-small-v3-discriminator进行微调。该模型采用BIO标注系统,能够识别15种实体类型,涵盖人工制品、动物和文明等多个领域。在评估集上,模型达到了0.8339的F1分数和0.9628的准确率。用户可以通过Transformers pipeline轻松调用此模型,适用于多种韩语命名实体识别任务。
ner-english-ontonotes-fast - 基于Flair框架的英文命名实体识别模型
FlairGithubHuggingfaceOntonotes命名实体识别开源项目模型深度学习自然语言处理
基于Flair框架开发的英文命名实体识别模型,支持识别人名、地点、组织机构等18类实体。模型在Ontonotes数据集上F1分数达到89.3%,通过Python API可快速集成使用。适用于各类英文文本的命名实体识别任务。
gte-large-zh - 中文语义相似度与检索的卓越表现模型
GithubHuggingfaceMTEBgte-large-zhsentence-transformers开源项目模型自然语言处理语义相似度
gte-large-zh模型在MTEB中文基准测试中表现突出,涵盖句子相似度、文本分类、聚类、重排序和检索等多个任务。该模型在CMNLI和JDReview等数据集上的准确率超过80%,为中文自然语言处理应用提供了稳定的语义理解基础。
nli-mpnet-base-v2 - 多功能句子向量化和语义分析模型
GithubHuggingfacesentence-transformers向量嵌入开源项目模型特征提取自然语言处理语义相似度
nli-mpnet-base-v2是一个基于sentence-transformers的开源模型,能够将句子和段落转换为768维向量。该模型支持文本聚类、语义搜索等多种自然语言处理任务,具有易用性高、适用范围广的特点。在多项基准测试中,nli-mpnet-base-v2展现了优异的性能,为文本嵌入和相似度计算提供了有效解决方案。研究人员和开发者可以方便地将其集成到NLP项目中,提升应用效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号