Project Icon

speechless-zephyr-code-functionary-7b

灵活集成与动态推理的多LoRAs模型

此项目通过结合多种LoRA模块,介绍了一种创建多功能模型的新方法。使用从Mistral-7B-v0.1衍生的LoRA模块,该项目能够静态或动态整合模块来支持多种功能,比如无审查内容和代码增强功能。利用无梯度路由器,可自动组装LoRA模块,仅需少量推理步骤即可解决未见过的任务,并在多个基准测试中表现出色。

speechless-code-mistral-7b-v1.0 - 全面支持多语言的代码生成与推理模型
GPTQGithubHuggingfacePythonSpeechlessCoder开源项目文本生成模型模型优化
该项目展示了一款专注于代码生成和推理的模型,具备提升推理和规划能力的特点。其多种量化选项支持8位以下的CPU+GPU推断,使其在多种编程语言上均表现不俗。模型经过微调,覆盖了201,981个样本的数据集,包括编码、推理和规划样本,支持Alpaca指令格式。在HumanEval基准测试中通过率达51.22%,适用于多种编程语言的验证,如Python、Java、C++等,为编程助手和代码验证提供支持。
ZephRP-m7b - 合并LimaRP和Zephyr模型优化文本生成
AI模型GithubHuggingfaceLimaRPMistralZephRP-m7b开源项目模型角色扮演
ZephRP-m7b模型集成了Zephyr模型的知识和LimaRP的风格,实现了文本生成的增强。模型采用Alpaca指令格式,支持响应长度调整,适用于角色扮演和故事模拟。注意模型可能在特定论坛中表现出偏见,不适合用于提供真实信息或建议。训练过程中使用了8-bit lora PEFT适配器,并以Mistral-7B-v0.1为基础严格优化,以确保生成质量。
mLoRA - 为大型语言模型提供高效多LoRA适配器构建
GithubLoRA适配器mLoRA大语言模型开源框架开源项目高效微调
mLoRA 是一个开源框架,旨在高效地对多个大型语言模型 (LLMs) 进行 LoRA 和其变体的微调。其主要功能包括同时微调多个 LoRA 适配器、共享基础模型、优化的流水线并行算法,并支持多种 LoRA 变体和偏好对齐算法。mLoRA 可在普通硬件上高效运行,支持多种模型和算法,有助于节省计算和内存资源。通过参考文档可了解如何快速部署和使用 mLoRA。
lorahub - LoraHub框架实现高效跨任务泛化
GithubLoraHub低秩适应动态组合大语言模型开源项目跨任务泛化
LoraHub框架通过组合多个LoRA模块实现跨任务泛化。该项目仅需少量样例即可适应新任务,无需额外参数或训练。LoraHub提供完整代码和预训练模型,支持pip安装。在BIG-Bench Hard基准测试中,LoraHub性能接近少样本上下文学习,推理速度与零样本学习相当。
tiny-random-Llama-3-lora - 优化轻量级Llama-3模型的LoRA适配器
GithubHuggingfaceLlama-3LoRApeft参数高效微调开源项目模型模型适配器
本项目为tiny-random-Llama-3模型开发LoRA适配器。LoRA作为一种高效微调技术,能够大幅降低参数量和加速训练过程。研究人员和开发者可利用此适配器快速将tiny-random-Llama-3模型应用于特定任务,无需完整重训练。该工具为小型语言模型的应用研究提供了便利,有助于推动NLP领域的发展。
LoRA - 大型语言模型的低秩适配方法与参数节省
DeBERTaGLUEGPT-2GithubLoRARoBERTa开源项目
LoRA通过低秩分解矩阵实现大型语言模型的低秩适配,减少了训练参数数量,实现高效的任务切换和存储节省。它在GLUE基准测试中的表现与完全微调相当或更好,同时显著降低了参数需求。LoRA支持RoBERTa、DeBERTa和GPT-2等模型,并已集成到Hugging Face的PEFT库中,提供了便捷的适配解决方案。
BLoRA - 批量处理多个LoRA模型以提升GPU利用率
GPU优化GithubLoRA开源项目批处理推理语言模型
BLoRA项目开发了一种新技术,通过在同一批次中处理多个LoRA模型的推理来提高GPU利用率。该技术支持同时加载多个LoRA适配器,并在单一基础模型上进行并行推理。BLoRA不仅优化了计算效率,还为开发者提供了在不同任务间灵活切换模型行为的工具。这一简单而直观的实现为大规模语言模型的应用创造了新机会。
lora - 使用低秩自适应技术进行快速稳定扩散模型微调
DreamboothGithubHuggingfaceLoRAPivotal TuningStable Diffusion开源项目
该项目使用低秩自适应技术进行快速稳定扩散模型微调,比dreambooth方法快两倍,支持inpainting,并且生成非常小的模型文件(1MB~6MB),便于共享和下载。兼容diffusers库,提供多向量核心调优反演功能,并实现更好的性能。项目集成了Huggingface Spaces,增加了LoRA合并、Resnet应用和转换脚本功能。通过仅微调模型的残差,该方法显著缩小模型大小,同时保持高保真度,适用于需要快速高效微调的用户。
LongLoRA - 探索大规模长上下文语言模型的高效训练与实用应用
GithubLLaMA2LoRALongAlpaca开源项目深度学习长上下文语言模型
LongLoRA项目开发了一种高效微调方法,处理大型长上下文语言模型,涵盖了从7B至70B的各种模型规模和LongAlpaca-12k实验性数据集。项目支持多种微调方式,在基凊测试中验证了模型性能,技术可应用于多种NLP任务,助力复杂语言处理。实现显著性能优势,为企业和研究人员在从机器翻译到自动摘要等NLP任务中提供了有效的解决方案。
loraplus - 提升大型模型微调效率的创新技术
GithubICML 2024LoRA+低秩适应开源项目模型微调超参数优化
LoRA+是一种创新的低秩适应技术,专注于提高大型模型的微调效率。该技术引入新的超参数优化训练过程,尤其适合处理复杂的下游任务。项目提供完整代码实现,兼容Hugging Face Trainer和自定义训练流程,并附带GLUE基准测试和图像分类示例。LoRA+在多种任务中表现出色,为研究人员和开发者提供了改进大型模型微调效果的有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号