Project Icon

GAN-Inversion

GAN逆映射技术的最新进展及应用综述

本资源集合汇总了GAN逆映射技术的最新研究成果,包括2D和3D方法、预训练模型、潜在空间编辑及其在图像生成、操纵和理解等领域的应用。作为相关综述论文的补充,该项目追踪并总结了这一快速发展领域的进展,为研究人员和开发者提供全面参考。

GAN Inversion: A Survey

TPAMI 2022
Weihao Xia · Yulun Zhang · Yujiu Yang · Jing-Hao Xue · Bolei Zhou · Ming-Hsuan Yang

arxiv PDF Project Page TPAMI PDF


This repo is a collection of resources on GAN inversion, as a supplement for our survey. If you find any work missing or have any suggestions (papers, implementations and other resources), feel free to pull requests. You could manually edit items or use the script to produce them in the markdown format.

citation
@article{xia2022gan,
    author  = {Xia, Weihao and Zhang, Yulun and Yang, Yujiu and Xue, Jing-Hao and Zhou, Bolei and Yang, Ming-Hsuan},
    title   = {GAN Inversion: A Survey},
    journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
    year={2022}
  }
Table of Contents

Inverted Pretrained Models

2D GANs

Scaling up GANs for Text-to-Image Synthesis.
Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, Taesung Park.
CVPR 2023 (Highlight). [PDF] [Project]

StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis.
Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, Timo Aila.
ICML 2023. [Project] [PDF] [Code]

StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets.
Axel Sauer, Katja Schwarz, Andreas Geiger.
SIGGRAPH 2022. [PDF] [Project] [Code]

Self-Distilled StyleGAN: Towards Generation from Internet Photos.
Ron Mokady, Michal Yarom, Omer Tov, Oran Lang, Daniel Cohen-Or, Tali Dekel, Michal Irani, Inbar Mosseri.
SIGGRAPH 2022. [PDF] [Project] [Code]

Ensembling Off-the-shelf Models for GAN Training.
Nupur Kumari, Richard Zhang, Eli Shechtman, Jun-Yan Zhu
CVPR 2022. [PDF] [Project] [Code]

StyleGAN3: Alias-Free Generative Adversarial Networks.
Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila.
NeurIPS 2021. [PDF] [Project] [Code] [Rosinality]

StyleGAN2-Ada: Training Generative Adversarial Networks with Limited Data.
Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila.
NeurIPS 2020. [PDF] [Code] [Steam StyleGAN2-ADA]

StyleGAN2: Analyzing and Improving the Image Quality of StyleGAN.
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila.
CVPR 2020. [PDF] [PyTorch] [Offical TF] [Unoffical Tensorflow 2.0]

StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks.
Tero Karras, Samuli Laine, Timo Aila.
CVPR 2019. [PDF] [Offical TF]

ProGAN: Progressive Growing of GANs for Improved Quality, Stability, and Variation.
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen.
ICLR 2018. [PDF] [Offical TF]

3D-aware GANs

Please check our 3D-aware image synthesis survey, paper list, and project for more details.

EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks.
Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, Gordon Wetzstein.
CVPR 2022. [PDF] [Project] [Code]

StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation.
Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, Ira Kemelmacher-Shlizerman.
CVPR 2022. [PDF] [Project] [Code]

StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis.
Jiatao Gu, Lingjie Liu, Peng Wang, Christian Theobalt.
ICLR 2022. [PDF] [Project]

pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis.
Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein.
CVPR 2021. [PDF] [Project] [Code]

GAN Inversion Methods

The section primarily encompasses general-purpose 2D or 3D inversion techniques, whereas the methods presented in the following section cater to particular applications.

3D GAN Inversion

TriPlaneNet: An Encoder for EG3D Inversion.
Ananta R. Bhattarai, Matthias Nießner, Artem Sevastopolsky.
WACV 2024. [PDF] [Project]

In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing.
Yiran Xu, Zhixin Shu, Cameron Smith, Jia-Bin Huang, Seoung Wug Oh.
CVPR 2024. [PDF] [Project]

Make Encoder Great Again in 3D GAN Inversion through Geometry and Occlusion-Aware Encoding.
Ziyang Yuan, Yiming Zhu, Yu Li, Hongyu Liu, Chun Yuan.
ICCV 2023. [PDF] [Project] [Code]

LatentSwap3D: Semantic Edits on 3D Image GANs.
Enis Simsar, Alessio Tonioni, Evin Pınar Örnek, Federico Tombari.
ICCV 2023 Workshops on AI3DCC. [PDF] [Code]

High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization.
*Jiaxin Xie, Hao Ouyang, Jingtan Piao, [Chenyang

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号