Project Icon

mlx_parallm

为Apple Silicon设备实现高效并行推理

MLX ParaLLM是一个为Apple Silicon设备开发的开源项目,利用MLX框架实现批处理KV缓存技术,从而提高并行推理效率。项目支持Meta-Llama、Phi-3和Gemma等多种模型,兼容量化和float16格式。通过batch_generate方法,MLX ParaLLM实现自动填充、提示模板格式化和多种采样策略,适用于大规模并行文本生成任务。

llama-2-7b-chat-bnb-4bit - 开源LLM模型训练加速工具实现2至5倍速提升并节省70%内存
GithubHuggingfaceLlama-2Unsloth人工智能大语言模型开源项目模型模型微调
该开源项目致力于优化大语言模型的训练过程,通过创新技术为Mistral、Gemma、Llama 2等主流模型提供训练加速解决方案。基于Colab平台的多个训练笔记本支持对话及文本补全功能,可实现2-5倍的训练速度提升,并将内存占用降低70%。项目支持GGUF格式导出及vLLM、Hugging Face平台部署,为计算资源受限的AI开发团队提供了高效的模型训练方案。
llm.c - 纯C和CUDA实现的高效轻量级语言模型训练框架
CUDAC语言GPU训练GithubLLM开源项目
llm.c是一个使用纯C和CUDA实现的高效轻量级语言模型训练框架。该项目不依赖PyTorch或cPython等大型框架,通过简洁代码实现GPT-2和GPT-3系列模型的预训练。llm.c支持单GPU、多GPU和多节点训练,提供详细教程和实验示例。项目在保持代码可读性的同时追求高性能,适用于教育和实际应用。此外,llm.c支持多种硬件平台,并有多个编程语言的移植版本。
llm-analysis - 大型语言模型训练与推理的延迟和内存使用分析工具
GithubTransformer模型llm-analysis内存分析大语言模型延迟分析开源项目
llm-analysis 是一款为大型语言模型(LLMs),如Transformer设计的工具,用于在不同的模型、GPU、数据类型和并行配置下估算训练与推理的延迟和内存使用。通过简单设置,可以快速计算出不同训练和推理方案的系统性能,以确定最优和可行的配置方案。此外,llm-analysis 支持多种并行化和重计算策略,并提供多种预定义配置和命令行接口,极大简化了配置和调试流程。它功能强大且易于集成,是开发和优化LLMs的理想工具。
Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF - 提升量化效率及IMatrix集成以增强文本生成性能
GithubHuggingfaceIMatrixMeta-Llama-3-70B-Instruct-abliterated-v3.5开源项目文本生成模型量化
本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。
llama-3-8b-Instruct - 开源大模型训练工具实现显著提速与内存优化
GithubHuggingfaceLlama-3内存优化开源项目性能优化模型模型微调深度学习
基于4bit量化技术的开源大语言模型训练工具,为Mistral、Gemma、Llama等主流模型提供优化方案。项目通过技术创新实现训练速度提升2-5倍,内存占用降低70%。支持GGUF格式导出和Hugging Face部署,提供多个免费Colab训练环境,降低了模型训练的硬件门槛。
ray-llm - 简化LLM部署,利用Ray Serve和vLLM实现高效性能
AnyscaleGithubLLMRay ServeRayLLMvLLM开源项目
RayLLM是一种简便的解决方案,用于部署和管理多种开源LLM,利用Ray Serve和vLLM的功能,包括自动扩展、多GPU和多节点支持。RayLLM支持连续批处理和量化,大幅提高吞吐量并降低推理成本。通过REST API轻松迁移和测试,并集成多种LLM后端,提供灵活高效的解决方案。
llmc - 开源工具压缩大型语言模型提升效率
GithubLLMCLLM压缩剪枝开源项目性能优化量化
llmc是一个压缩大型语言模型的开源工具,采用先进压缩算法提高效率和减小模型体积。它支持多种LLM和压缩方法,可在单GPU上量化评估大模型,兼容多种推理后端。项目提供LLM量化基准,帮助用户选择合适的压缩策略。
LLM-X - 多模型集成的大语言模型API管理平台
AI工具API集成LLM-X.AI大语言模型安全管理开发工具
LLM-X平台通过单一API整合多个大语言模型,提供安全的令牌管理和统一的LLM集成。该平台支持OpenAI、Anthropic等知名提供商,并具备API使用可视化功能。LLM-X简化了开发流程,无需管理基础设施,使开发者能专注于创新而非技术细节,从而提高工作效率。平台支持多个领先的大语言模型,让开发者能够轻松地在工作流中使用各种LLM,并通过成本跟踪功能优化资源利用。
Meta-Llama-3.1-8B-Instruct - 创新技术实现大型语言模型微调的高效优化
GithubHuggingfaceLlama 3.1Unsloth内存优化开源项目性能提升模型模型微调
该项目开发了一种高效方法,大幅提升Llama 3.1、Gemma 2和Mistral等大型语言模型的微调效率。通过提供多个免费的Google Colab笔记本,项目使各类用户都能便捷地微调Llama-3 8B、Gemma 7B和Mistral 7B等模型。这些笔记本界面友好,适合各层次用户使用。采用此方法可将微调速度提升2-5倍,同时将内存使用降低最多70%,显著优化了资源利用。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号