Project Icon

Hebrew-Mistral-7B

面向希伯来语和英语的通用大型语言模型

Hebrew-Mistral-7B是一款开源的大型语言模型,参数量达到70亿,专注于希伯来语和英语的语言理解与生成。基于Mistral-7B-v1.0,模型适用于多种自然语言处理任务,包含64,000个词元,提升了希伯来语和英语的语言处理能力。

Hebrew-Mistral-7B 项目介绍

项目概述

Hebrew-Mistral-7B 是一个开源的大型语言模型(LLM),它在希伯来语和英语上进行了预训练,拥有70亿个参数。该模型基于Mistral的Mistral-7B-v1.0版本进行扩展和训练。值得一提的是,Hebrew-Mistral-7B 拥有64,000个词汇的希伯来语分词器,并在持续预训练中进一步在希伯来语和英语的语料中进行了调优。

功能与应用

Hebrew-Mistral-7B 是一个功能强大的通用语言模型,适用于各种自然语言处理任务。尤其在希伯来语理解和生成方面有着突出的表现。这使得它成为了处理涉及希伯来语言问题的理想工具。

使用方法

下面介绍了一些快速开始使用此模型的代码示例。

在CPU上运行

要在CPU上运行该模型,首先确保安装最新版本的 transformers 库。然后根据下面的代码示例来使用:

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B")

input_text = "שלום! מה שלומך היום?"
input_ids = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

在GPU上运行

若有GPU支持,可以使用以下代码在GPU上运行Hebrew-Mistral-7B:

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B", device_map="auto")

input_text = "שלום! מה שלומך היום?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

使用4位精度运行

如果希望在资源受限的情况下进行模型推理,可以使用4位精度的方式:

from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B")
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B", quantization_config = BitsAndBytesConfig(load_in_4bit=True))

input_text = "שלום! מה שלומך היום?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

注意事项

需要注意的是,Hebrew-Mistral-7B 是一个预训练的基础模型,因此不具备任何内容审核或过滤机制。

作者与合作者

Hebrew-Mistral-7B 由Yam Peleg训练,合作伙伴包括Jonathan Rouach和Arjeo公司。这体现了多方合作的精神,共同推动希伯来语自然语言处理技术的发展。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号