Project Icon

gym-unrealcv

视觉强化学习真实虚拟环境

Gym-UnrealCV是一个结合虚幻引擎和OpenAI Gym的开源项目,为视觉强化学习提供真实虚拟环境。支持主动物体跟踪、物体搜索和机器人臂控制等多种机器人视觉任务。项目设计简单易用,无需深入了解底层技术即可运行强化学习算法。提供预定义环境、随机代理示例和多种学习算法实现,并支持环境自定义,满足不同研究需求。

Gym-UnrealCV: Realistic virtual worlds for visual reinforcement learning

Introduction

This project integrates Unreal Engine with OpenAI Gym for visual reinforcement learning based on UnrealCV. In this project, you can run (Multi-Agent) Reinforcement Learning algorithms in various realistic UE4 environments easily without any knowledge of Unreal Engine and UnrealCV.

A number of environments have been released for robotic vision tasks, including Active object tracking, Searching for objects, and Robot arm control.

Tracking in UrbanCity with distractors
Tracking in Garden
Tracking in SnowForest
Tracking in Garage with distractors
Searching in RealisticRoom
Robot Arm Control

The framework of this project is shown below: framework

  • UnrealCV is the basic bridge between Unreal Engine and OpenAI Gym.
  • OpenAI Gym is a toolkit for developing an RL algorithm, compatible with most numerical computation libraries, such as TensorFlow or PyTorch.

Installation

Dependencies

  • UnrealCV
  • Gym
  • CV2
  • Matplotlib
  • Numpy
  • Docker(Optional)
  • Nvidia-Docker(Optional)

We recommend you use anaconda to install and manage your Python environment. CV2 is used for image processing, like extracting object masks and bounding boxes. Matplotlib is used for visualization.

Install Gym-UnrealCV

It is easy to install gym-unrealcv, just run

git clone https://github.com/zfw1226/gym-unrealcv.git
cd gym-unrealcv
pip install -e . 

While installing gym-unrealcv, dependencies including OpenAI Gym, unrealcv, numpy and matplotlib are installed. Opencv should be installed additionally. If you use anaconda, you can run

conda update conda
conda install --channel menpo opencv

or

pip install opencv-python

Prepare Unreal Binary

Before running the environments, you need to prepare unreal binaries. You can load them from clouds by running load_env.py

python load_env.py -e {ENV_NAME}

ENV_NAME can be RealisticRoom, RandomRoom, Arm, etc. After that, it will automatically download a related env binary to the UnrealEnv directory.

Please refer the binary_list in load_env.py for more available example environments.

Usage

1. Run a Random Agent

Once gym-unrealcv is installed successfully, you will see that your agent is walking randomly in first-person view to find a door, after you run:

cd example/random
python random_agent.py -e UnrealSearch-RealisticRoomDoor-DiscreteColor-v0

After that, if all goes well, a pre-defined gym environment UnrealSearch-RealisticRoomDoor-DiscreteColor-v0 will be launched. And then you will see that your agent is moving around the room randomly.

We list the pre-defined environments in this page, for object searching and active object tracking.

2. Learning RL Agents

To demonstrate how to train an agent in gym-unrealcv, we provide DQN (Keras) and DDPG (Keras) codes in .example.

Moreover, you can also refer to some recent projects for more advanced usages, as follows:

  • craves_control provides an example for learning to control a robot arm via DDPG (PyTorch).
  • active_tracking_rl provides examples for learning active visual tracking via A3C (Pytorch). The training framework can be used for single-agent RL, adversarial RL, and multi-agent games.
  • pose-assisted-collaboration provides an example for learning multi-agent collaboration via A3C (Pytorch) in multiple PTZ cameras single target environments.

Customize an Environment

We provide a set of tutorials to help you get started with Gym-UnrealCV.

1. Modify the pre-defined environment

You can follow the modify_env_tutorial to modify the configuration of the pre-defined environment.

2. Add a new unreal environment

You can follow the add_new_env_tutorial to add a new unreal environment for your RL task.

Papers Using Gym-UnrealCV

🎉 Please feel free to pull requests or open an issue to add papers.

Cite

If you use Gym-UnrealCV in your academic research, we would be grateful if you could cite it as follow:

@misc{gymunrealcv2017,
    author = {Fangwei Zhong, Weichao Qiu, Tingyun Yan, Alan Yuille, Yizhou Wang},
    title = {Gym-UnrealCV: Realistic virtual worlds for visual reinforcement learning},
    howpublished={Web Page},
    url = {https://github.com/unrealcv/gym-unrealcv},
    year = {2017}
}

Contact

If you have any suggestions or are interested in using Gym-UnrealCV, get in touch at zfw1226 [at] gmail [dot] com.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号