Project Icon

SPViT

单路径自注意力剪枝,提升ViT模型效率的新方法

SPViT项目提出了一种单路径自注意力剪枝方法,将预训练ViT模型中的自注意力层剪枝为卷积层,形成混合模型结构。该方法通过权重共享机制降低了模型搜索成本,在减少计算资源消耗的同时保持了模型性能。实验表明,SPViT在多个基准测试中表现良好,为Vision Transformer模型的优化设计提供了新思路。

ViT-SO400M-14-SigLIP - 基于SigLIP的视觉-语言模型实现零样本图像分类
GithubHuggingfaceSigLIPViT图像分类开源项目机器学习模型自然语言处理
ViT-SO400M-14-SigLIP是基于WebLI数据集训练的视觉-语言预训练模型,采用sigmoid损失函数进行图像和文本的联合学习。该模型在零样本图像分类任务中表现出色,具有良好的跨模态理解能力。通过OpenCLIP和timm库,用户可以方便地使用该模型生成图像和文本嵌入。ViT-SO400M-14-SigLIP适用于图像分类、图像检索等多种计算机视觉和自然语言处理任务。
fast-DiT - 改进PyTorch实现的可扩展扩散模型转换器
DiTGithubPyTorchTransformer图像生成开源项目扩散模型
fast-DiT 项目提供了扩散模型转换器(DiT)的改进 PyTorch 实现。该项目包含预训练的类条件 DiT 模型、Hugging Face Space 和 Colab 笔记本,以及优化的训练脚本。通过采用梯度检查点、混合精度训练和 VAE 特征预提取等技术,显著提升了训练速度和内存效率。这一实现为研究人员和开发者提供了探索和应用扩散模型的有力工具。
maxvit_base_tf_512.in21k_ft_in1k - MaxViT图像分类模型支持多尺寸特征提取和深度学习训练
GithubHuggingfaceImageNetMaxViT人工智能图像分类开源项目模型深度学习
MaxViT是谷歌研究团队开发的图像分类模型,通过ImageNet-21k预训练和ImageNet-1k微调实现。模型集成多轴注意力机制,总参数量119.9M,支持512x512分辨率输入。除图像分类外,还可输出多尺度特征图和嵌入向量,便于迁移至其他视觉任务。模型在ImageNet-1k测试中取得88.20%的分类准确率。
vits2 - 单阶段文本转语音系统的效率与质量提升
GithubSK TelecomVITS2单阶段模型开源项目文本到语音自然语言处理
VITS2项目融合了对抗学习与结构设计,在单阶段文本转语音技术上实现了显著的质量与效率提升。此模型通过结构和训练机制的优化,增强了语音的自然感和多讲者语音特征的匹配度,并提高了训练及推理速度。VITS2的创新技术显著降低了对音素转换的依赖,支持了完整的端到端处理。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
vit_large_patch14_reg4_dinov2.lvd142m - 带寄存器的视觉Transformer模型用于图像特征提取
DINOv2GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取
vit_large_patch14_reg4_dinov2.lvd142m是一个带寄存器的视觉Transformer模型,在LVD-142M数据集上使用自监督DINOv2方法预训练。该模型具有3.044亿参数,可处理518x518大小的图像,适用于图像分类和特征提取任务。它结合了ViT和DINOv2技术,为计算机视觉应用提供了高效的解决方案。
MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
clip-vit-base-patch32 - OpenAI CLIP模型实现零样本图像分类的视觉语言预训练
CLIPGithubHuggingfaceOpenAI图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言预训练模型,使用ViT-B/32和Transformer架构分别作为图像和文本编码器。通过对比学习训练,CLIP能实现零样本图像分类等任务,在多项计算机视觉基准测试中表现优异。尽管在细粒度分类和物体计数方面存在局限,CLIP为研究人员提供了探索模型鲁棒性和泛化能力的重要工具。
Open-MAGVIT2 - 自回归视觉生成新突破 大幅提升图像分词性能
GithubOpen-MAGVIT2图像分词器大规模词表开源项目自回归模型视觉生成
Open-MAGVIT2是一个创新的自回归视觉生成项目,采用无查找技术和262144大小的码本,克服了VQGAN的局限性。该项目用PyTorch重新实现MAGVIT2分词器,在图像分词方面取得显著进展,8倍下采样时rFID达到0.39。项目致力于推动自回归视觉生成领域发展,目前处于积极开发阶段,未来计划拓展至视频生成领域。
VPGTrans - 低成本跨语言模型迁移的视觉提示生成器VPGTrans指南
GithubVL-LLMVL-LLaMAVL-VicunaVPGTrans开源项目视觉提示生成器
VPGTrans框架通过迁移视觉提示生成器,显著降低大语言模型的资源消耗和训练数据需求。该项目包括VL-LLaMA和VL-Vicuna两阶段训练方法,并详细介绍了安装、评估和训练步骤,由新加坡国立大学和清华大学的研究人员开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号