#Apache Spark
Sparkling Water: 融合H2O与Apache Spark的强大机器学习引擎
TransmogrifAI: 革新机器学习开发的AutoML利器
SynapseML
SynapseML是一个开源库,旨在简化大规模机器学习管道的创建。它提供简单、可组合和分布式的API,支持文本分析、视觉处理、异常检测等多种任务。基于Apache Spark,SynapseML与SparkML/MLLib共享相同的API,能够无缝集成到现有的Spark工作流中。该库支持Python、R、Scala、Java和.NET,适用于各种数据库和云数据存储,助力构建智能系统。
TransmogrifAI
TransmogrifAI是一个基于Apache Spark的自动化机器学习库,使用Scala编写,旨在提高开发效率。它提供类型安全、模块化和可重用的API,使用户能快速构建生产级机器学习应用,无需深厚的机器学习知识。该库显著减少模型调优时间,同时实现高精度。
spark-nlp
Spark NLP 是一个基于 Apache Spark 的开源库,提供高效且准确的自然语言处理注释,支持机器学习管道的分布式扩展。该库包含超过 36000 个预训练管道和模型,支持 200 多种语言,涵盖分词、词性标注、嵌入、命名实体识别、文本分类、情感分析、机器翻译等任务。兼容 BERT、RoBERTa 等主流变压器模型,支持 Python、R、Java、Scala 和 Kotlin。
catboost
CatBoost是一种基于决策树的梯度提升算法,具有高准确性和速度优势,能够处理数值和分类特征。它提供快速的GPU训练、直观的可视化工具和与Apache Spark的分布式训练支持,适用于多种应用场景。通过官方文档和教程,用户可以快速上手,并通过参数调优和交叉验证进一步优化模型性能。
sparklyr
sparklyr是一个为R语言提供Apache Spark接口的开源包。它允许用户使用dplyr语法处理大规模数据,执行分布式机器学习算法,并运行分布式R代码。该框架集成了Spark生态系统的多个组件,如MLlib、H2O和XGBoost等。通过sparklyr,数据科学家可以利用Spark的分布式计算能力,高效完成大数据分析和机器学习任务,无需深入了解Spark的底层实现。
spark
DataFlint是专为Apache Spark开发的开源数据应用性能监控(D-APM)工具。它提供实时查询和集群状态监控、性能热图、应用运行摘要等功能,并能发出性能警报和优化建议。DataFlint可快速安装,基于Spark UI基础设施运行,旨在帮助大数据工程师高效解决性能问题和调试故障,为Spark应用带来类似传统APM解决方案的使用体验。
sparkling-water
Sparkling Water是一个开源项目,将H2O-3机器学习引擎与Apache Spark集成。它提供了Spark和H2O数据结构间的转换工具,支持使用Spark数据作为H2O算法输入,并提供构建机器学习应用的基础模块。项目还包含PySparkling接口,支持从PySpark直接使用。Sparkling Water支持Spark Shell集成、Spark Submit应用、以及通过Maven包使用。它提供多种后端部署模式,适应不同使用场景。项目致力于简化大规模数据处理和机器学习任务的开发流程,在Spark环境中优化机器学习解决方案的开发和部署过程。
spark
Apache Spark是一个大规模数据处理的统一分析引擎,提供Scala、Java、Python和R的高级API。它支持多种高级工具,如Spark SQL、pandas API on Spark、MLlib、GraphX和Structured Streaming,分别用于SQL查询、pandas操作、机器学习、图处理和流处理。Spark的优化引擎支持通用计算图,适用于多种大数据分析场景。