EEG-ATCNet
EEG-ATCNet是一种创新的深度学习模型,专门用于脑机接口中EEG信号的运动想象分类。该模型融合卷积神经网络、自注意力机制和时间卷积网络,有效提取EEG信号时空特征。在BCI竞赛IV-2a数据集上,EEG-ATCNet准确率达81.10%,优于其他常用模型。项目还实现了多种注意力机制和数据处理方法,为EEG信号分析研究提供了实用工具。