#胸部X光
XrayGPT
XrayGPT是一个结合医学视觉语言模型技术的人工智能项目,专注于胸部X光片分析和报告生成。该系统整合了经过微调的Vicuna语言模型和MedClip医学视觉编码器,通过线性变换实现对齐。XrayGPT经过大量医患对话和放射学对话训练,可生成准确、清晰的X光分析摘要,为放射科医生提供辅助支持。
XrayGLM
XrayGLM是一个用于解读胸部X光片的中文医疗多模态模型,结合图像识别和自然语言处理技术分析X光影像并生成诊断报告。该模型基于MIMIC-CXR和OpenI数据集训练,支持影像诊断和多轮对话交互,为医疗影像诊断提供智能辅助。XrayGLM的开发促进了中文医学多模态模型的研究进展。
torchxrayvision
TorchXRayVision是一个开源的胸部X光影像分析工具库,为多个公开数据集提供统一接口和预处理流程。它包含多种预训练模型,可用于快速分析大型数据集、实现少样本学习,以及在多个外部数据集上评估算法性能。该库旨在简化胸部X光影像研究工作流程,提高分析效率。
BiomedVLP-CXR-BERT-specialized
BiomedVLP-CXR-BERT-specialized是专为胸部X光领域开发的语言模型。通过优化词汇表、创新预训练方法、权重正则化和文本增强技术,该模型在放射学自然语言推理和掩码语言模型预测等任务中表现优异。它还能应用于零样本短语定位和图像分类等视觉-语言处理任务。此外,该模型与ResNet-50图像模型联合训练,可用于短语定位。作为生物医学视觉-语言处理研究的重要工具,BiomedVLP-CXR-BERT-specialized为相关领域提供了新的可能性。
rad-dino
RAD-DINO是一个基于DINOv2自监督学习方法的视觉转换器模型,专用于胸部X光图像编码。作为视觉主干,它支持图像分类、分割、聚类和检索等多种下游任务。该模型由Microsoft Health Futures开发,使用5个公开胸部X光数据集共882,775张图像训练而成。RAD-DINO作为通用医学影像编码器,能够在无需文本监督的情况下有效捕获胸部X光的关键特征。