#领域适应

ContinualLM: 革新语言模型的持续学习框架

3 个月前
Cover of ContinualLM: 革新语言模型的持续学习框架

HuatuoGPT-II: 突破性医疗大语言模型的进化与应用

3 个月前
Cover of HuatuoGPT-II: 突破性医疗大语言模型的进化与应用

深入解析源自由测试时间适应: 技术、应用与未来展望

3 个月前
Cover of 深入解析源自由测试时间适应: 技术、应用与未来展望
相关项目
Project Cover

awesome-source-free-test-time-adaptation

该项目整理了测试时适应(TTA)研究领域的论文,涵盖自监督、信息熵、批量归一化等多个方向。列表包含最新研究成果和代码链接,定期更新维护。为机器学习研究人员和开发者提供TTA技术的系统概览,便于深入学习和应用。

Project Cover

awesome-domain-adaptation

该项目汇集了领域自适应技术的最新研究论文、代码和相关资源。内容涵盖无监督、半监督、弱监督等多个子领域,以及计算机视觉、自然语言处理等应用场景。论文按主题分类整理,并提供代码实现链接,方便研究人员快速了解该领域前沿进展,是领域自适应研究的重要参考资料库。

Project Cover

ContinualLM

ContinualLM是专注于语言模型持续学习的开源框架。它集成多种先进方法,采用统一的训练评估流程。支持领域自适应预训练和端任务微调,包含6个领域数据集。该框架致力于推动语言模型持续学习研究,为研究人员提供灵活有力的工具。

Project Cover

HuatuoGPT-II

HuatuoGPT-II是一款面向医疗领域的大型语言模型,采用一阶段适应方法提升医学知识和对话能力。在多项医疗基准测试中表现优异,专家评估和最新医学执照考试中超越GPT-4。项目开源了多个版本模型、训练代码和部分数据,为医疗AI研究提供支持。

Project Cover

KBIR

KBIR模型采用新预训练方法进行关键词边界填充,提升关键任务表现。基于RoBERTa架构,使其广泛适用于命名实体识别、问答等自然语言处理任务,可利用预训练嵌入在多种AutoModel环境中灵活应用。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号