#环境模拟
相关项目
tinyzero
tinyzero是一个简易的强化学习框架,用于在任意环境中训练类AlphaZero的智能体。该框架提供简单接口实现新环境、模型和智能体,支持多种游戏类型。tinyzero采用Monte Carlo树搜索和深度学习技术,可在Google Colab上快速部署,适合研究人员和爱好者探索AI在各类任务中的应用。
android_env
AndroidEnv是一个将Android设备转化为强化学习环境的Python库。该平台支持在Android系统上定义自定义任务,涵盖所有Android应用。智能体通过模拟触摸屏操作与设备交互,库则处理这些操作并返回像素观察和奖励信号。AndroidEnv适用于多种研究场景,如页面滚动、邮件发送或游戏得分等任务,为强化学习研究提供了丰富的实验环境。
PettingZoo
PettingZoo是一个Python库,专为多智能体强化学习研究设计。它采用Agent Environment Cycle (AEC)游戏模型,提供统一的API支持各类多智能体环境。该库包含Atari、Butterfly、Classic等多个环境家族,支持多样化的智能体交互。PettingZoo还提供并行API用于同步行动场景,并通过严格的版本控制确保实验可重现性。
awesome-knowledge-driven-AD
该项目汇集了知识驱动自动驾驶领域的最新研究论文和开源资源。内容涵盖数据集、基准测试、环境模拟和驾驶员代理等关键方面,持续追踪行业前沿进展。这一资源库为自动驾驶技术的研究和开发提供了全面的参考材料。