#HuBERT
中文语音预训练模型:推动中文语音识别技术的突破性进展
2 个月前
相关项目
bark-voice-cloning-HuBERT-quantizer
该项目提供了一种在Python 3.10环境下,利用Bark进行高质量语音克隆的方法,并兼容多种语言的HuBERT模型和定制量化器模型。通过Huggingface模型页面、音频Web UI和在线交互式笔记本,用户可以获取代码实例和实现语音克隆。项目还包括语音输入要求和训练指南,帮助开发者实现语音克隆功能。
chinese_speech_pretrain
chinese_speech_pretrain项目开源了基于WenetSpeech数据集训练的中文语音预训练模型。项目包含wav2vec 2.0和HuBERT的BASE与LARGE版本,均使用1万小时多样化中文语音数据训练。模型在自动语音识别任务中表现优异,尤其适合低资源场景。项目提供模型下载及使用指南,可用于语音识别、语音合成等研究领域。
japanese-hubert-base
rinna Co., Ltd.发布的日语HuBERT Base模型,采用与原始HuBERT相同的12层变换器结构,通过ReazonSpeech语料库的19000小时语音数据进行训练,支持自监督语音表示学习。模型提供详尽的训练配置和论文参考,便于研究和应用。使用Transformers库可方便地实现日语语音处理。
hubert-base-superb-ks
该语音关键词检测系统基于HuBERT预训练模型开发,可识别Speech Commands数据集中的10类预设命令词、静音和未知类别。模型在测试集达到96.72%准确率,支持16kHz采样率音频输入,集成transformers pipeline接口,便于设备端快速部署和调用。