self-paced-ensemble
Self-paced Ensemble (SPE)是一个处理大规模高度不平衡数据分类的集成学习框架。SPE采用严格平衡的欠采样策略,无需计算样本间距离,适用于各类数据集。该框架计算高效,性能优异,可与多种学习模型兼容。作为通用框架,SPE能提升现有方法在不平衡数据上的表现,特别适合处理噪声大、极度不平衡的大规模数据集。