#低光照图像增强
Retinexformer
Retinexformer是一个低光照图像增强项目,支持超过15个基准测试和超高分辨率图像(最高4000x6000)。该项目在NTIRE 2024挑战中获得第二名,提供代码、预训练模型和训练日志。Retinexformer框架支持分布式数据并行和混合精度训练,自适应分割测试策略显著提升模型性能。
PyDIff
PyDiff项目利用金字塔扩散模型技术增强低光照图像。在LOL数据集上,其PSNR达27.09,SSIM为0.93,展现出优异性能。项目开源了训练和测试代码,支持多GPU训练,并可用于自定义低级任务数据集。PyDiff为低光照图像增强研究提供了有力工具。
LLIE_Survey
该研究全面综述了低光照图像和视频增强(LLIE)技术,提出SICE_Grad和SICE_Mix数据集用于复杂混合曝光场景,引入Night Wenzhou视频数据集包含航拍和街景。研究梳理LLIE发展历程,系统分类各种方法,提供基准数据集和评估指标,为研究者提供重要参考。
Diffusion-Low-Light
Diffusion-Low-Light是一个发表于Siggraph Asia 2023的开源项目,提出了基于小波扩散模型的低光照图像增强方法。该方法在LOLv1、LOLv2和LSRW等多个数据集上表现优异,与现有技术相比效果显著。项目提供预训练模型、代码和详细实施指南,在保持图像细节和自然度方面表现出色,为低光照图像处理领域带来了创新解决方案。
KinD_plus
KinD++是一个开源的低光照图像增强项目,基于TensorFlow实现。其核心创新在于引入多尺度照明注意力模块(MSIA),有效减少了非均匀斑点和过度平滑等视觉缺陷。项目提供完整的训练测试代码,兼容TensorFlow 2.0,并附带预训练模型。KinD++在多个标准数据集上表现优异,为低光照图像增强研究提供了新思路。