Project Icon

KinD_plus

创新低光照图像增强技术

KinD++是一个开源的低光照图像增强项目,基于TensorFlow实现。其核心创新在于引入多尺度照明注意力模块(MSIA),有效减少了非均匀斑点和过度平滑等视觉缺陷。项目提供完整的训练测试代码,兼容TensorFlow 2.0,并附带预训练模型。KinD++在多个标准数据集上表现优异,为低光照图像增强研究提供了新思路。

KinD++

这是KinD++的Tensorflow实现。(关于论文: 超越提亮低光图像)

张毅等. 超越提亮低光图像. IJCV, (2021).

我们提出了一种新颖的多尺度照明注意力模块(MSIA), 可以缓解KinD留下的视觉缺陷(如非均匀斑点和过度平滑)。

KinD网络在以下论文中提出。

在ACM MM 2019中提出了《点燃黑暗: 一个实用的低光照图像增强器》 Yonghua Zhang, Jiawan Zhang, Xiaojie Guo

KinD++的网络架构:

反射率恢复网络和MSIA模块:

与最先进的低光图像增强方法的可视化比较.

为了更好地适应TensorFlow 2.0, 我们对代码进行了修改。现在您可以直接使用TensorFlow 2.0运行此代码。

要求

  1. Python
  2. Tensorflow >= 2.0
  3. numpy, PIL

测试

请将测试图像放入'test_images'文件夹,并从谷歌网盘百度网盘下载预训练的检查点,然后运行

python evaluate.py

测试数据集(如DICM、LIME、MEF和NPE)可以从谷歌网盘下载。我们对这些数据集的增强结果可以从谷歌网盘下载。

训练

原始的LOL数据集可以从这里下载。我们重新整理了原始的LOL数据集,并添加了几对全零图像和260对合成图像,以提高分解和恢复结果。训练数据集可以从谷歌网盘下载。对于训练,只需运行

python decomposition_net_train.py
python illumination_adjustment_net_train.py
python reflectance_restoration_net_train.py

您也可以对LOL数据集进行评估,只需运行

python evaluate_LOLdataset.py

低光图像增强方法综述

传统方法:

  1. 单尺度Retinex (SSR) [5]
  2. 多尺度Retinex (MSR) [6]
  3. 自然保留增强(NPE) [7]
  4. 基于融合的增强方法(MEF) [8]
  5. LIME [2]
  6. SRIE [9]
  7. Dong [10]
  8. BIMEF [11]
    上述方法的__代码__可以从这里找到。
  9. CRM [12] (代码)

深度学习方法:

  1. RetinexNet [3] (代码)
  2. GLADNet [13] (代码)
  3. DeepUPE [4] (代码)
  4. KinD [1] (代码)

NIQE代码

采用无参考指标NIQE进行定量比较。计算NIQE的原始代码在这里。为了提高鲁棒性,我们遵循作者的代码,通过扩展PIRM数据集的100幅高分辨率自然图像,重新训练了模型参数。将原始125幅图像和额外的100幅图像(目录:PIRM_dataset\Validation\Original)放入一个'data'文件夹,然后运行

[mu_prisparam cov_prisparam] = estimatemodelparam('data',96,96,0,0,0.75);

重新训练后,将生成'modelparameters_new.mat'文件。我们使用这个模型来评估所有的结果。

参考文献

[1] Y. Zhang, J. Zhang, and X. Guo, "Kindling the darkness: A practical low-light image enhancer," in ACM MM, 2019, pp. 1632–1640.

[2] X. Guo, Y. Li, and H. Ling, "Lime: Low-light image enhancement via illumination map estimation," IEEE TIP, vol. 26, no. 2, pp. 982–993, 2017.

[3] C. Wei, W. Wang, W. Yang, and J. Liu, "Deep retinex decomposition for low-light enhancement," in BMVC, 2018.

[4] R. Wang, Q. Zhang, C.-W. Fu, X. Shen, W.-S. Zheng, and J. Jia, "Underexposed photo enhancement using deep illumination estimation," in CVPR, 2019, pp. 6849–6857.

[5] D. J. Jobson, Z. Rahman, and G. A. Woodell, "Properties and performance of a center/surround retinex," IEEE TIP, vol. 6, no. 3, pp. 451–462, 1997.

[6] D. J. Jobson, Z. Rahman, and G. A. Woodell, "A multiscale retinex for bridging the gap between color images and the human observation of scenes," IEEE TIP, vol. 6, no. 7, pp. 965–976, 2002.

[7] S. Wang, J. Zheng, H. Hu, and B. Li, "Naturalness preserved enhancement algorithm for non-uniform illumination images," IEEE TIP, vol. 22, no. 9, pp. 3538–3548, 2013.

[8] X. Fu, D. Zeng, H. Yue, Y. Liao, X. Ding, and J. Paisley, "A fusion-based enhancing method for weakly illuminated images," Signal Processing, vol. 129, pp. 82–96, 2016.

[9] X. Fu, D. Zeng, Y. Huang, X. Zhang, and X. Ding, "A weighted variational model for simultaneous reflectance and illumination estimation," in CVPR, 2016, pp. 2782–2790.

[10] X. Dong, Y. Pang, and J. Wen, "Fast efficient algorithm for enhancement of low lighting video," in ICME, 2011, pp. 1–6.

[11] Z. Ying, L. Ge, and W. Gao, "A bio-inspired multi-exposure fusion framework for low-light image enhancement," arXiv: 1711.00591, 2017.

[12] Z. Ying, L. Ge, Y. Ren, R. Wang, and W. Wang, "A new low-light image enhancement algorithm using camera response model," in ICCVW, 2018, pp. 3015–3022.

[13] W. Wang, W. Chen, W. Yang, and J. Liu, "Gladnet: Low-light enhancement network with global awareness," in FG, 2018.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号