Project Icon

sionna

基于TensorFlow的开源通信系统仿真库推动物理层创新

Sionna是一个开源Python库,利用TensorFlow进行数字通信系统的链路级仿真。该项目为物理层研究提供了实用工具,支持GPU加速,并配有多种示例和教程。研究人员和工程师可以通过pip或Docker安装使用。Sionna致力于提升性能和用户体验,为通信系统的开发和优化创造了便利条件。

Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna™ is an open-source Python library for link-level simulations of digital communication systems built on top of the open-source software library TensorFlow for machine learning.

The official documentation can be found here.

Installation

Sionna requires Python and Tensorflow. In order to run the tutorial notebooks on your machine, you also need JupyterLab. You can alternatively test them on Google Colab. Although not necessary, we recommend running Sionna in a Docker container.

Sionna requires TensorFlow 2.13-2.15 and Python 3.8-3.11. We recommend Ubuntu 22.04. Earlier versions of TensorFlow may still work but are not recommended because of known, unpatched CVEs.

To run the ray tracer on CPU, LLVM is required by DrJit. Please check the installation instructions for the LLVM backend.

We refer to the TensorFlow GPU support tutorial for GPU support and the required driver setup.

Installation using pip

We recommend to do this within a virtual environment, e.g., using conda. On macOS, you need to install tensorflow-macos first.

1.) Install the package

    pip install sionna

2.) Test the installation in Python

    python
    >>> import sionna
    >>> print(sionna.__version__)
    0.18.0

3.) Once Sionna is installed, you can run the Sionna "Hello, World!" example, have a look at the quick start guide, or at the tutorials.

The example notebooks can be opened and executed with Jupyter.

For a local installation, the JupyterLab Desktop application can be used which also includes the Python installation.

Docker-based installation

1.) Make sure that you have Docker installed on your system. On Ubuntu 22.04, you can run for example

    sudo apt install docker.io

Ensure that your user belongs to the docker group (see Docker post-installation)

    sudo usermod -aG docker $USER

Log out and re-login to load updated group memberships.

For GPU support on Linux, you need to install the NVIDIA Container Toolkit.

2.) Build the Sionna Docker image. From within the Sionna directory, run

    make docker

3.) Run the Docker image with GPU support

    make run-docker gpus=all

or without GPU:

    make run-docker

This will immediately launch a Docker image with Sionna installed, running JupyterLab on port 8888.

4.) Browse through the example notebooks by connecting to http://127.0.0.1:8888 in your browser.

Installation from source

We recommend to do this within a virtual environment, e.g., using conda.

1.) Clone this repository and execute from within its root folder

    make install

2.) Test the installation in Python

    >>> import sionna
    >>> print(sionna.__version__)
    0.18.0

License and Citation

Sionna is Apache-2.0 licensed, as found in the LICENSE file.

If you use this software, please cite it as:

@article{sionna,
    title = {Sionna: An Open-Source Library for Next-Generation Physical Layer Research},
    author = {Hoydis, Jakob and Cammerer, Sebastian and {Ait Aoudia}, Fayçal and Vem, Avinash and Binder, Nikolaus and Marcus, Guillermo and Keller, Alexander},
    year = {2022},
    month = {Mar.},
    journal = {arXiv preprint},
    online = {https://arxiv.org/abs/2203.11854}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号