#Mask2Former
MP-Former - 基于mask-piloted机制的先进图像分割模型
Github开源项目Transformer图像分割CVPR 2023MP-FormerMask2Former
MP-Former是一种新型图像分割transformer模型,采用mask-piloted机制改进分割效果。项目包含训练和评估代码,适用于实例分割和全景分割任务。基于Mask2Former架构开发,在COCO数据集上展现出良好性能。项目提供了复现论文实验的脚本,为计算机视觉研究提供参考实现。MP-Former在CVPR 2023上发表,提供了no noise和all-layer MP训练设置,12轮训练后在实例分割任务上达到40.15 AP。项目代码开源,安装过程与Mask2Former相同,便于研究者快速上手和进行进一步探索。
mask2former-swin-large-ade-panoptic - 通用图像分割模型,提升性能和效率
Github开源项目模型Huggingface分割视觉Mask2FormerADE20kMaskFormer
Mask2Former利用多尺度可变形注意力Transformer,提高图像分割性能与效率。其掩蔽注意力解码器在不增加计算负担的情况下提升表现,适用于实例、语义和全景分割。基于ADE20k全景分割数据集的训练研究,提供优化的分割方案。
mask2former-swin-large-cityscapes-semantic - Mask2Former大型语义分割模型 适用多种图像分割任务
Github开源项目深度学习计算机视觉模型图像分割语义分割HuggingfaceMask2Former
Mask2Former是一款先进的语义分割模型,基于Swin骨干网络在Cityscapes数据集上训练。该模型采用统一的掩码预测方法,可同时处理实例、语义和全景分割任务。通过引入多尺度可变形注意力Transformer和带掩码注意力的Transformer解码器,Mask2Former在性能和效率上均超越了先前的最佳模型。它为研究人员和开发者提供了一个强大的工具,可用于各种图像分割应用。
mask2former-swin-base-coco-panoptic - 多任务图像分割的先进模型
Github开源项目深度学习计算机视觉模型图像分割语义分割HuggingfaceMask2Former
Mask2Former-swin-base-coco-panoptic是一个基于COCO全景分割数据集训练的先进图像分割模型。它采用统一方法处理实例、语义和全景分割任务,通过预测掩码集合和对应标签实现多任务分割。该模型引入多尺度可变形注意力Transformer和masked attention等技术,在性能和效率上超越前代方法。Mask2Former为计算机视觉领域提供了versatile的图像分割解决方案,适用于多种分割场景。
mask2former-swin-large-coco-instance - 使用Swin骨干的高效图像分割Transformer模型
Github开源项目模型图像分割实例分割语义分割COCOHuggingfaceMask2Former
Mask2Former在COCO数据集上的实例分割中表现出色,采用Swin骨干网,通过掩码预测和标签分类统一处理多种分割任务。相比MaskFormer,其改进的多尺度变形注意力机制提升了性能,并且不增加计算量的情况下优化了训练效率。此模型可以用于实例分割,提供多种微调版本供不同需求使用。
mask2former-swin-tiny-coco-instance - Mask2Former模型:统一处理实例、语义和全景图像分割
Github开源项目深度学习计算机视觉模型图像分割实例分割HuggingfaceMask2Former
Mask2Former是一个先进的图像分割模型,基于Swin骨干网络在COCO数据集上训练。它采用统一的方法处理实例、语义和全景分割任务,通过预测掩码和标签来完成分割。该模型引入多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率上超越了先前的MaskFormer模型。Mask2Former提供了简单的使用方法和代码示例,方便研究人员和开发者在图像分割领域进行应用和研究。
mask2former-swin-large-ade-semantic - Mask2Former:统一架构实现多类型图像分割
Github开源项目计算机视觉Transformer模型图像分割语义分割HuggingfaceMask2Former
Mask2Former-Swin-Large-ADE-Semantic是一款先进的图像分割模型,基于Swin backbone构建并在ADE20k数据集上训练。该模型采用统一架构处理实例、语义和全景分割任务,通过预测掩码和标签集实现多类型分割。其核心优势在于采用改进的多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率方面均优于前代MaskFormer模型。Mask2Former适用于广泛的图像分割场景,能够提供精确的分割结果。
mask2former-swin-large-mapillary-vistas-panoptic - Mask2Former:集实例、语义和全景分割于一体的图像分割模型
Github开源项目深度学习计算机视觉模型图像分割语义分割HuggingfaceMask2Former
Mask2Former是一个基于Swin主干网络的高级图像分割模型,在Mapillary Vistas数据集上训练用于全景分割。它通过预测掩码和标签集合,统一处理实例、语义和全景分割任务。该模型采用改进的Transformer架构和高效训练策略,性能和效率均优于先前的MaskFormer。Mask2Former为各类图像分割应用提供了强大支持,推动了计算机视觉技术的进步。
mask2former-swin-large-coco-panoptic - 基于Transformer架构的高效图像分割模型
Github开源项目深度学习模型图像分割Huggingface视觉模型COCO数据集Mask2Former
Mask2Former-Swin-Large是一个基于COCO数据集训练的图像分割模型,通过多尺度可变形注意力和掩码注意力机制,实现了实例、语义和全景分割的统一处理。相比MaskFormer具有更高的性能和计算效率
mask2former-swin-small-coco-instance - 基于Transformer架构的统一图像分割框架
Github开源项目模型训练模型图像分割Huggingface机器视觉Mask2Former语义识别
Mask2Former是一个基于COCO数据集的图像分割模型,采用Swin-Small作为基础架构。通过统一的掩码预测方法实现实例、语义和全景分割功能。该模型创新性地结合多尺度可变形注意力机制和掩码注意力技术,优化了计算效率。采用子采样点损失计算策略,使训练过程更加高效。
mask2former-swin-large-mapillary-vistas-semantic - Mask2Former模型整合多尺度变形和掩码注意力实现高效图像分割
Github开源项目深度学习计算机视觉模型图像分割语义分割HuggingfaceMask2Former
Mask2Former是基于Swin骨干网络的大型模型,针对Mapillary Vistas数据集进行语义分割训练。该模型采用统一方法处理实例、语义和全景分割任务,通过预测掩码集合及对应标签实现。结合多尺度变形注意力Transformer和掩码注意力机制,Mask2Former在性能和效率上均优于先前的SOTA模型MaskFormer。模型支持批量处理,输出类别和掩码查询逻辑,便于后续处理和结果可视化。
mask2former-swin-large-cityscapes-panoptic - 在图像分割任务中,Mask2Former模型以高效提升性能
Github开源项目TransformerHugging Face模型图像分割HuggingfaceMask2FormerCityscapes
该项目使用Mask2Former模型,整合多尺度变形注意力和掩码注意力机制,在实例、语义及全景分割任务中展现卓越性能。相比之前的MaskFormer,Mask2Former实现效果提升与计算简化,在Cityscapes全景分割任务中表现突出,充分展示了其在图像分割中的应用潜力。