#模型预训练
gpt-2-tensorflow2.0 - 在Tensorflow 2.0中实现的GPT-2模型预训练与文本生成
Github开源项目文本生成GPT-2tensorflowOpenAi模型预训练
该项目实现了OpenAi GPT-2模型在Tensorflow 2.0中的预训练和序列生成,并提供详细的设置和训练指南。用户可以使用示例数据进行预训练或下载OpenWebText数据进行训练。支持多GPU分布式训练,并提供命令行接口和TensorBoard集成,帮助高效地进行模型训练和优化。项目遵循MIT许可证,社区贡献和改进热烈欢迎。
nanotron - 高效的大规模模型预训练库
Github开源项目深度学习Transformer模型预训练并行计算Nanotron
Nanotron是一个开源的Transformer模型预训练库。它提供灵活API,支持自定义数据集预训练。该库特点包括高性能、可扩展性强,支持3D并行、专家并行、AFAB和1F1B调度策略、ZeRO-1优化器等先进技术。Nanotron适用于大规模模型训练,旨在提高预训练效率。
cocodr-base-msmarco - 零样本文本检索与分布鲁棒学习模型
Github开源项目自然语言处理模型Huggingface模型预训练向量相似度COCO-DRBEIR
COCODR是一个基于BERT-base架构的文本检索模型,通过BEIR语料库预训练和MS MARCO数据集微调而成。模型采用对比学习和分布鲁棒学习方法,解决零样本密集检索中的分布偏移问题。借助HuggingFace transformers框架,模型可用于文本嵌入和相似度计算。
xcit_medium_24_p8_224.fb_in1k - 基于XCiT架构的图像分类与特征提取模型
Github开源项目深度学习模型图像分类Huggingface模型预训练ImageNet-1kXCiT
XCiT是Facebook Research开发的图像分类模型,在ImageNet-1k数据集上完成预训练。模型采用Cross-Covariance Image Transformer架构,拥有8430万参数,支持224x224图像输入分析。通过timm库实现,既可用于图像分类,也可作为特征提取器生成图像嵌入向量,为开发者提供便捷的模型加载和图像处理功能。
codebert-cpp - 训练于GitHub代码库的C++代码分析模型
Github开源项目代码生成机器学习模型C++Huggingface模型预训练CodeBERT
CodeBERT-CPP是基于Microsoft CodeBERT架构的C++代码分析模型,经100万步训练优化。该模型利用GitHub代码库数据进行掩码语言建模,主要用于CodeBERTScore评分系统,也适用于其他C++代码分析任务。作为开源项目,CodeBERT-CPP为开发者提供了一个专业的C++代码评估工具。
vision-perceiver-conv - Perceiver IO模型:灵活应用于图像分类的优化架构
Github开源项目模型自注意力机制图像分类ImageNetHuggingface模型预训练Perceiver IO
Perceiver IO是一个适用于多种模态的transformer编码器模型,通过自注意力机制在固定的计算资源下实现更高效的处理。该模型在ImageNet上进行了预训练,能够通过像素级处理进行准确的图像分类。模型结合了卷积和maxpool预处理,可以生成多尺寸和多语义的输出结果,并在ImageNet-1k中实现了82.1的顶级精度。这一模型不仅可用于高效的标准图像分类,还能通过替换分类解码器实现灵活的应用扩展,适用于多种任务的特征提取。
convnextv2_huge.fcmae_ft_in22k_in1k_512 - ConvNeXt-V2高效的图像分类与特征提取模型
Github开源项目模型图像分类ImageNetHuggingface模型预训练特征提取ConvNeXt-V2
ConvNeXt-V2模型在全卷积掩码自动编码器框架下进行预训练,并在ImageNet-22k和ImageNet-1k数据集上微调,提升了图像分类和特征提取的效率。模型拥有660.3M参数,处理512x512图像,适合复杂计算需求。支持图像分类、特征图提取和图像嵌入,确保高准确率和多样化应用,结合timm库简化操作,适用于研究和工业应用。