#多标签分类

xmc.dspy:基于少量样本的极端多标签分类(XMC)算法

3 个月前
Cover of xmc.dspy:基于少量样本的极端多标签分类(XMC)算法

C-Tran:大温哥华地区的公共交通系统

3 个月前
Cover of C-Tran:大温哥华地区的公共交通系统

JoyTag: 革命性的AI图像标注模型

3 个月前
Cover of JoyTag: 革命性的AI图像标注模型

JoyTag:一个突破性的AI图像标注模型

3 个月前
Cover of JoyTag:一个突破性的AI图像标注模型
相关项目
Project Cover

classifier-multi-label

本项目介绍了如何使用BERT结合TextCNN、Denses、Seq2Seq等多种算法实现多标签文本分类。涵盖了模型结构、损失函数和解码方法等细节,展示了不同方法在推理速度和分类效果上的表现,提供了实验数据和结论,帮助开发者选择最佳解决方案。

Project Cover

joytag

JoyTag是基于ViT-B/16架构的AI视觉模型,专用于图像多标签分类。采用Danbooru标记体系,支持5000多个标签,适用于手绘和摄影等多种图像类型。模型在0.4阈值下F1分数达0.578,能为每张图像生成独立标签预测。可用于diffusion模型训练等多种应用场景。

Project Cover

C-Tran

C-Tran是一个探索Transformer在多标签图像分类中应用的开源项目。该项目提出了一种通用多标签图像分类方法,在COCO80和VOC20等数据集上展现出优秀性能。项目包含完整的训练和运行指南,涵盖数据处理和模型训练等关键步骤。C-Tran为计算机视觉领域提供了新的研究方向,对推进多标签图像分类技术具有重要意义。

Project Cover

xmc.dspy

Infer-Retrieve-Rank (IReRa)是一种创新的多标签分类方法,专门针对具有大量类别的任务。这个通用且模块化的程序通过预训练语言模型和检索器的交互,高效处理复杂的分类问题。IReRa仅需少量标记示例即可优化性能,无需模型微调。该项目提供完整文档,包括安装、数据处理、运行指南等,方便研究人员在各种语言模型推理和检索任务中应用。

Project Cover

rubert-tiny-toxicity

该开源项目基于cointegrated/rubert-tiny模型,旨在快速识别和分类俄语短文本中的不当和有害内容。通过多标签分类技术,该模型可针对谩骂、淫秽、威胁和声誉风险进行评估,协助社交网络内容审核。

Project Cover

rubert-tiny2-russian-emotion-detection

该项目开发了基于RuBERT-tiny2架构的俄语文本情感分析模型,可识别7种情感类别。模型在CEDR M7数据集上实现85%的多标签准确率和76%的单标签准确率。项目提供Python接口便于集成,同时开源了功能全面的Aniemore软件包。这一解决方案为俄语文本的情感分析任务提供了高效准确的工具支持。

Project Cover

beto-contextualized-hate-speech

这个基于BETO的模型为西班牙语仇恨言论检测提供了创新解决方案。它不仅能识别针对8个不同群体的仇恨言论,还能检测暴力煽动。通过综合分析评论内容和背景信息,模型实现了更准确的多标签分类。研究人员和内容审核者可以利用此工具,快速获取详细的仇恨言论分析结果,有助于更好地理解和应对在线仇恨言论问题。

Project Cover

NADI2024-baseline

该项目提供了一个基于BERT模型的多标签阿拉伯方言识别工具,通过微调多个数据集实现国家级方言识别。模型使用MarBERTv2作为基础,能够实现多标签预测,提高文本中多个方言的识别精度,为阿拉伯语自然语言处理提供良好的基础和测试平台,涵盖18个国家的方言。

Project Cover

tweet-topic-21-multi

tweet-topic-21-multi模型基于TimeLMs语言模型开发,通过对2018年1月至2021年12月间发布的超过1.24亿条推文进行训练,实现了多标签话题分类功能。模型采用11,267条推文进行微调,涵盖艺术文化、商业、科技、体育等多种话题,适用于需要高精度英文文本多标签分类的任务。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号