Project Icon

C-Tran

Transformer在多标签图像分类中的应用

C-Tran是一个探索Transformer在多标签图像分类中应用的开源项目。该项目提出了一种通用多标签图像分类方法,在COCO80和VOC20等数据集上展现出优秀性能。项目包含完整的训练和运行指南,涵盖数据处理和模型训练等关键步骤。C-Tran为计算机视觉领域提供了新的研究方向,对推进多标签图像分类技术具有重要意义。

基于Transformer的通用多标签图像分类
Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi
计算机视觉与模式识别会议(CVPR)2021
[论文] [海报] [幻灯片]

C-Tran的训练和运行

需要Python 3.7版本,所有使用的主要软件包及其版本都列在requirements.txt中。

COCO80数据集上的C-Tran

下载COCO数据(19G)

wget https://www.cs.virginia.edu/yanjun/jack/vision/coco.tar.gz
mkdir -p data/
tar -xvf coco.tar.gz -C data/

训练新模型

python main.py  --batch_size 16  --lr 0.00001 --optim 'adam' --layers 3  --dataset 'coco' --use_lmt --dataroot data/

VOC20数据集上的C-Tran

下载VOC2007数据(1.7G)

wget https://www.cs.virginia.edu/yanjun/jack/vision/voc.tar.gz
mkdir -p data/
tar -xvf voc.tar.gz -C data/

训练新模型

python main.py  --batch_size 16  --lr 0.00001 --optim 'adam' --layers 3  --dataset 'voc' --use_lmt --grad_ac_step 2 --dataroot data/

引用

@article{lanchantin2020general,
  title={General Multi-label Image Classification with Transformers},
  author={Lanchantin, Jack and Wang, Tianlu and Ordonez, Vicente and Qi, Yanjun},
  journal={arXiv preprint arXiv:2011.14027},
  year={2020}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号